Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Qingquan Liu x
  • All content x
Clear All Modify Search
Jie Yang, Qingquan Liu, and Wei Dai

Abstract

Accurate air temperature measurements are demanded for climate change research. However, air temperature sensors installed in a screen or a radiation shield have traditionally resisted observation accuracy due to a number of factors, particularly solar radiation. Here we present a novel temperature sensor array to improve the air temperature observation accuracy. To obtain an optimum design of the sensor array, we perform a series of analyses of the sensor array with various structures based on a computational fluid dynamics (CFD) method. Then the CFD method is applied to obtain quantitative radiation errors of the optimum temperature sensor array. For further improving the measurement accuracy of the sensor array, an artificial neural network model is developed to learn the relationship between the radiation error and environment variables. To assess the extent to which the actual performance adheres to the theoretical CFD model and the neural network model, air temperature observation experiments are conducted. An aspirated temperature measurement platform with a forced airflow rate up to 20 m s−1 served as an air temperature reference. The average radiation errors of a temperature sensor equipped with a naturally ventilated radiation shield and a temperature sensor installed in a screen are 0.42° and 0.23°C, respectively. By contrast, the mean radiation error of the temperature sensor array is approximately 0.03°C. The mean absolute error (MAE) between the radiation errors provided by the experiments and the radiation errors given by the neural network model is 0.007°C, and the root-mean-square error (RMSE) is 0.009°C.

Full access
Jie Yang, Qingquan Liu, Feng Ding, and Renhui Ding

Abstract

The observation accuracy of the surface air temperature less than 0.1 K is a requirement, stated by the meteorological and climatological community. However, the accuracy of a temperature sensor inside a shield is affected by a number of factors including solar radiation, wind speed, upwelling longwave radiation, air density, sun elevation angle, sun azimuth angle, underlying surface, precipitation, moisture, structure, and coating of the radiation shield. Due to these factors, the temperature error of the temperature sensor may be much larger than 1 K under adverse conditions. To improve the observation accuracy, this paper proposed a spherical temperature sensor array. A series of analytical calculations based on a computational fluid dynamics (CFD) method is performed to verify the design principle of this sensor array. The calculation results show that the temperature error ratio can be assumed as a constant. To verify the accuracy of this sensor array, simulations and observation experiments are conducted. The simulation results show that the mean difference between the temperature provided by this sensor array and the reference air temperature is 0.072 K. The field experiment results show that a root-mean-square error (RMSE) and a mean absolute error (MAE) between the temperature provided by this sensor array and the reference air temperature are 0.173 and 0.153 K, respectively.

Restricted access