Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Quan J. Wang x
  • All content x
Clear All Modify Search
Wentao Li, Quan J. Wang, and Qingyun Duan

Abstract

Statistical postprocessing methods can be used to correct bias and dispersion error in raw ensemble forecasts from numerical weather prediction models. Existing postprocessing models generally perform well when they are assessed on all events, but their performance for extreme events still needs to be investigated. Commonly used joint probability postprocessing models are based on the correlation between forecasts and observations. Because the correlation may be lower for extreme events as a result of larger forecast uncertainty, the dependence between forecasts and observations can be asymmetric with respect to the magnitude of the precipitation. However, the constant correlation coefficient in the traditional joint probability model lacks the flexibility to model asymmetric dependence. In this study, we formulated a new postprocessing model with a decreasing correlation coefficient to characterize asymmetric dependence. We carried out experiments using Global Ensemble Forecast System reforecasts for daily precipitation in the Huai River basin in China. The results show that, although it performs well in terms of continuous ranked probability score or reliability for all events, the traditional joint probability model suffers from overestimation for extreme events defined by the largest 2.5% or 5% of raw forecasts. On the contrary, the proposed variable-correlation model is able to alleviate the overestimation and achieves better reliability for extreme events than the traditional model. The proposed variable-correlation model can be seen as a flexible extension of the traditional joint probability model to improve the performance for extreme events.

Free access
Andrew Schepen, Yvette Everingham, and Quan J. Wang

Abstract

Multivariate seasonal climate forecasts are increasingly required for quantitative modeling in support of natural resources management and agriculture. GCM forecasts typically require postprocessing to reduce biases and improve reliability; however, current seasonal postprocessing methods often ignore multivariate dependence. In low-dimensional settings, fully parametric methods may sufficiently model intervariable covariance. On the other hand, empirical ensemble reordering techniques can inject desired multivariate dependence in ensembles from template data after univariate postprocessing. To investigate the best approach for seasonal forecasting, this study develops and tests several strategies for calibrating seasonal GCM forecasts of rainfall, minimum temperature, and maximum temperature with intervariable dependence: 1) simultaneous calibration of multiple climate variables using the Bayesian joint probability modeling approach; 2) univariate BJP calibration coupled with an ensemble reordering method (the Schaake shuffle); and 3) transformation-based quantile mapping, which borrows intervariable dependence from the raw forecasts. Applied to Australian seasonal forecasts from the ECMWF System4 model, univariate calibration paired with empirical ensemble reordering performs best in terms of univariate and multivariate forecast verification metrics, including the energy and variogram scores. However, the performance of empirical ensemble reordering using the Schaake shuffle is influenced by the selection of historical data in constructing a dependence template. Direct multivariate calibration is the second-best method, with its far superior performance in in-sample testing vanishing in cross validation, likely because of insufficient data relative to the number of parameters. The continued development of multivariate forecast calibration methods will support the uptake of seasonal climate forecasts in complex application domains such as agriculture and hydrology.

Free access
Wentao Li, Qingyun Duan, and Quan J. Wang

Abstract

Statistical postprocessing models can be used to correct bias and dispersion errors in raw precipitation forecasts from numerical weather prediction models. In this study, we conducted experiments to investigate four factors that influence the performance of regression-based postprocessing models with normalization transformations for short-term precipitation forecasts. The factors are 1) normalization transformations, 2) incorporation of ensemble spread as a predictor in the model, 3) objective function for parameter inference, and 4) two postprocessing schemes, including distributional regression and joint probability models. The experiments on the first three factors are based on variants of a censored regression model with conditional heteroscedasticity (CRCH). For the fourth factor, we compared CRCH as an example of the distributional regression with a joint probability model. The results show that the CRCH with normal quantile transformation (NQT) or power transformation performs better than the CRCH with log–sinh transformation for most of the subbasins in Huai River basin with a subhumid climate. The incorporation of ensemble spread as a predictor in CRCH models can improve forecast skill in our research region at short lead times. The influence of different objective functions (minimum continuous ranked probability score or maximum likelihood) on postprocessed results is limited to a few relatively dry subbasins in the research region. Both the distributional regression and the joint probability models have their advantages, and they are both able to achieve reliable and skillful forecasts.

Full access
Q. Duan, Z. Di, J. Quan, C. Wang, W. Gong, Y. Gan, A. Ye, C. Miao, S. Miao, X. Liang, and S. Fan

Abstract

Weather forecasting skill has been improved over recent years owing to advances in the representation of physical processes by numerical weather prediction (NWP) models, observational systems, data assimilation and postprocessing, new computational capability, and effective communications and training. There is an area that has received less attention so far but can bring significant improvement to weather forecasting—the calibration of NWP models, a process in which model parameters are tuned using certain mathematical methods to minimize the difference between predictions and observations. Model calibration of the NWP models is difficult because 1) there are a formidable number of model parameters and meteorological variables to tune, and 2) a typical NWP model is very expensive to run, and conventional model calibration methods require many model runs (up to tens of thousands) or cannot handle the high dimensionality of NWP models. This study demonstrates that a newly developed automatic model calibration platform can overcome these difficulties and improve weather forecasting through parameter optimization. We illustrate how this is done with a case study involving 5-day weather forecasting during the summer monsoon in the greater Beijing region using the Weather Research and Forecasting Model. The keys to automatic model calibration are to use global sensitivity analysis to screen out the most important parameters influencing model performance and to employ surrogate models to reduce the need for a large number of model runs. Through several optimization and validation studies, we have shown that automatic model calibration can improve precipitation and temperature forecasting significantly according to a number of performance measures.

Full access