Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: R. J. Brewer x
  • Refine by Access: All Content x
Clear All Modify Search
Richard R. Heim Jr. and Michael J. Brewer

Abstract

The international scientific community has long recognized the need for coordinated drought monitoring and response, but many factors have prevented progress in the development of a Global Drought Early Warning System (GDEWS): some of which involve administrative issues (coordinated international action and policy) while others involve scientific, technological, and logistical issues. The creation of the National Integrated Drought Information System (NIDIS) Portal within the United States provided an opportunity to take the first steps toward building the informational foundation for a GDEWS: that is, a Global Drought Information System (GDIS). At a series of workshops sponsored by the World Meteorological Organization (WMO) and Group on Earth Observations (GEO) held in Asheville, North Carolina, in April 2010, it was recommended that a modular approach be taken in the creation of a GDIS and that the NIDIS Portal serve as the foundation for the GDIS structure. Once a NIDIS-based Global Drought Monitor (GDM) Portal (GDMP) established an international drought clearinghouse, the various components of a GDIS (drought monitoring, forecasting, impacts, history, research, and education) and later a GDEWS (drought relief, recovery, and planning) could be constructed atop it. The NIDIS Portal is a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education. This portal utilizes Open Geospatial Consortium (OGC) web mapping services (WMS) to incorporate continental drought monitors into the GDMP. As of early 2012, the GDM has incorporated continental drought information for North America (North American Drought Monitor), Europe (European Drought Observatory), and Africa (African Drought Monitor developed by Princeton University); interest has been expressed by groups representing Australia and South America; and coordination with appropriate parties in Asia is also expected. Because of the range of climates across the world and the diverse nature of drought and the sectors it impacts, the construction and functioning of each continental drought monitor needs to be appropriate for the continent in question. The GDMP includes a suite of global drought indicators identified by experts and adopted by the WMO as the necessary measures to examine drought from a meteorological standpoint; these global drought indicators provide a base to assist the global integration and interpretation of the continental drought monitors. The GDMP has been included in recent updates to the GEO Work Plan and has benefited from substantial coordination with WMO on both their Global Framework for Climate Services and the National Drought Policy efforts. The GDMP is recognized as having the potential to be a major contributor to both of these activities.

Full access
Michael J. Brewer and Richard R. Heim, Jr.

No Abstract available.

Full access
C. W. Bruce, Y. P. Yee, B. D. Hinds, R. J. Brewer, J. Minjares, and R. G. Pinnick

Abstract

A field adapted spectrophone system employing a tuneable CO2 laser source (over wavelengths 9.2–10.8 μm) was used to measure atmospheric gaseous and particulate absorption at an isolated desert location in the southwestern United States. Measurements were made both for ambient conditions (when aerosol particulate absorption was found to be negligible compared to that of gases) and for dusty conditions resulting from vehicular traffic. For ambient conditions the gaseous absorption coefficient was found to vary with time from expected levels upward by as much as a factor of 3. Sources which could be correlated with increased absorption are discussed. For dusty conditions the spectrophone data were compared with estimates of the absorption coefficient calculated on the basis of measured particle size distributions together with estimates of particle complex indices of refraction. Temporal variation of the absorption coefficient correlated quite closely for the two methods while the calculated values were generally higher. Sampling and calculational uncertainties are suggested as likely to be responsible for this discrepancy.

Full access
Timothy A. Bonin, Brian J. Carroll, R. Michael Hardesty, W. Alan Brewer, Kristian Hajny, Olivia E. Salmon, and Paul B. Shepson

Abstract

A Halo Photonics Stream Line XR Doppler lidar has been deployed for the Indianapolis Flux Experiment (INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and autonomously, a novel composite fuzzy logic approach has been developed that combines information from various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified measurement of the mixing height and its uncertainty. The composite approach uses the strengths of each measurement strategy to overcome the limitations of others so that a complete representation of turbulent mixing is made in the lowest km, depending on clouds and aerosol distribution. Additionally, submeso nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can lead to an overestimate of the mixing height. The mixing height is compared with in situ profile measurements from a research aircraft for validation. To demonstrate the utility of the measurements, statistics of the mixing height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured, with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, respectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning and decaying more rapidly in the evening with lighter winds.

Full access
R. J. Alvarez II, C. J. Senff, A. O. Langford, A. M. Weickmann, D. C. Law, J. L. Machol, D. A. Merritt, R. D. Marchbanks, S. P. Sandberg, W. A. Brewer, R. M. Hardesty, and R. M. Banta

Abstract

The National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division (NOAA/ESRL/CSD) has developed a versatile, airborne lidar system for measuring ozone and aerosols in the boundary layer and lower free troposphere. The Tunable Optical Profiler for Aerosol and Ozone (TOPAZ) lidar was deployed aboard a NOAA Twin Otter aircraft during the Texas Air Quality Study (TexAQS 2006) and the California Research at the Nexus of Air Quality and Climate Change (CalNex 2010) field campaigns. TOPAZ is capable of measuring ozone concentrations in the lower troposphere with uncertainties of several parts per billion by volume at 90-m vertical and 600-m horizontal resolution from an aircraft flying at 60 m s−1. The system also provides uncalibrated aerosol backscatter profiles at 18-m vertical and 600-m horizontal resolution. TOPAZ incorporates state-of-the-art technologies, including a cerium-doped lithium calcium aluminum fluoride (Ce:LiCAF) laser, to make it compact and lightweight with low power consumption. The tunable, three-wavelength UV laser source makes it possible to optimize the wavelengths for differing atmospheric conditions, reduce the interference from other atmospheric constituents, and implement advanced analysis techniques. This paper describes the TOPAZ lidar, its components and performance during testing and field operation, and the data analysis procedure, including a discussion of error sources. The performance characteristics are illustrated through a comparison between TOPAZ and an ozonesonde launched during the TexAQS 2006 field campaign. A more comprehensive set of comparisons with in situ measurements during TexAQS 2006 and an assessment of the TOPAZ accuracy and precision are presented in a companion paper.

Full access
Y. L. Pichugina, R. M. Banta, T. Bonin, W. A. Brewer, A. Choukulkar, B. J. McCarty, S. Baidar, C. Draxl, H. J. S. Fernando, J. Kenyon, R. Krishnamurthy, M. Marquis, J. Olson, J. Sharp, and M. Stoelinga

Abstract

Annually and seasonally averaged wind profiles from three Doppler lidars were obtained from sites in the Columbia River basin of east-central Oregon and Washington, a major region of wind-energy production, for the Second Wind Forecast Improvement Project (WFIP2) experiment. The profile data are used to quantify the spatial variability of wind flows in this area of complex terrain, to assess the HRRR–NCEP model’s ability to capture spatial and temporal variability of wind profiles, and to evaluate model errors. Annually averaged measured wind speed differences over the 70-km extent of the lidar measurements reached 1 m s−1 within the wind-turbine rotor layer, and 2 m s−1 for 200–500 m AGL. Stronger wind speeds in the lowest 500 m occurred at sites higher in elevation, farther from the river, and farther west—closer to the Cascade Mountain barrier. Validating against the lidar data, the HRRR model underestimated strong wind speeds (>12 m s−1) and, consequently, their frequency of occurrence, especially at the two lowest-elevation sites, producing annual low biases in rotor-layer wind speed of 0.5 m s−1. The RMSE between measured and modeled winds at all sites was about 3 m s−1 and did not degrade significantly with forecast lead time. The nature of the model errors was different for different seasons. Moreover, although the three sites were located in the same basin terrain, the nature of the model errors was different at each site. Thus, if only one of the sites had been instrumented, different conclusions would have been drawn as to the major sources of model error, depending on where the measurements were made.

Full access
Sara C. Tucker, Christoph J. Senff, Ann M. Weickmann, W. Alan Brewer, Robert M. Banta, Scott P. Sandberg, Daniel C. Law, and R. Michael Hardesty

Abstract

The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the results to those derived from ship-launched, balloon-radiosonde potential temperature and relative humidity profiles is presented.

Full access
I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley

Abstract

An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It was found that a working wind turbine generates a wake with the maximum velocity deficit varying from 27% to 74% and with the longitudinal dimension varying from 120 up to 1180 m, depending on the wind strength and atmospheric turbulence. It is shown that, at high wind speeds, the twofold increase of the turbulent energy dissipation rate (from 0.0066 to 0.013 m2 s−3) leads, on average, to halving of the longitudinal dimension of the wind turbine wake (from 680 to 340 m).

Full access
Robert M. Banta, Yelena L. Pichugina, W. Alan Brewer, Julie K. Lundquist, Neil D. Kelley, Scott P. Sandberg, Raul J. Alvarez II, R. Michael Hardesty, and Ann M. Weickmann

Abstract

Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6–2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.

Full access
Volker Wulfmeyer, David D. Turner, B. Baker, R. Banta, A. Behrendt, T. Bonin, W. A. Brewer, M. Buban, A. Choukulkar, E. Dumas, R. M. Hardesty, T. Heus, J. Ingwersen, D. Lange, T. R. Lee, S. Metzendorf, S. K. Muppa, T. Meyers, R. Newsom, M. Osman, S. Raasch, J. Santanello, C. Senff, F. Späth, T. Wagner, and T. Weckwerth

Abstract

Forecast errors with respect to wind, temperature, moisture, clouds, and precipitation largely correspond to the limited capability of current Earth system models to capture and simulate land–atmosphere feedback. To facilitate its realistic simulation in next-generation models, an improved process understanding of the related complex interactions is essential. To this end, accurate 3D observations of key variables in the land–atmosphere (L–A) system with high vertical and temporal resolution from the surface to the free troposphere are indispensable.

Recently, we developed a synergy of innovative ground-based, scanning active remote sensing systems for 2D to 3D measurements of wind, temperature, and water vapor from the surface to the lower troposphere that is able to provide comprehensive datasets for characterizing L–A feedback independently of any model input. Several new applications are introduced, such as the mapping of surface momentum, sensible heat, and latent heat fluxes in heterogeneous terrain; the testing of Monin–Obukhov similarity theory and turbulence parameterizations; the direct measurement of entrainment fluxes; and the development of new flux-gradient relationships. An experimental design taking advantage of the sensors’ synergy and advanced capabilities was realized for the first time during the Land Atmosphere Feedback Experiment (LAFE), conducted at the Atmospheric Radiation Measurement Program Southern Great Plains site in August 2017. The scientific goals and the strategy of achieving them with the LAFE dataset are introduced. We envision the initiation of innovative L–A feedback studies in different climate regions to improve weather forecast, climate, and Earth system models worldwide.

Open access