Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: R. L. Jenne x
  • Refine by Access: All Content x
Clear All Modify Search
S. K. Kao, R. L. Jenne, and J. F. Sagendorf

Abstract

The wavenumber-frequency spectra of the kinetic energy of the zonal and meridional components of the motion in the mid-troposphere of the Southern Hemisphere show a definite spectral domain of wave activities. This spectral domain is generally oriented from a region of low wavenumbers and low frequencies to a region of high wavenumber and negative frequencies designated for waves moving from west to east. The wavenumber-frequency spectra of the large-scale motion indicate that wave activities in the summer have the same intensity as in the winter in the Southern Hemisphere, whereas in the Northern Hemisphere the wave intensity in summer is about 50% of that in winter.

The frequency spectra of the kinetic energy of the zonal and meridional components of the motion show similar distributions at all latitudes and seasons for the respective components of the motion. In the high-frequency range, the frequency spectra of both the zonal and meridional motion are approximately proportional to the –1 power of the frequency.

The wavenumber spectra of the kinetic energy of the zonal and meridional motion also show a similar distribution at all latitudes and seasons for the respective components of the motion. In the high-wave-number range, the spectra of both the zonal and meridional components of the motion are approximately proportional to the –3 power of the wavenumber, which is characteristic of the wavenumber spectrum for the two-dimensional flow of an incompressible viscous fluid. The fact that the wavenumber and frequency spectra are proportional to different powers of wavenumber and frequency indicates that Taylor's transformation does not apply to the large-scale motion in the atmosphere.

The mean kinetic energy of the zonal motion in the mid-troposphere of the Southern Hemisphere shows a maximum near 40S in winter and 50S in summer, with 75% of the kinetic energy of the zonal motion being associated with the stationary mean zonal motion and 25% with the zonal component of the moving waves.

The mean kinetic energy of the meridional component of the motion shows a maximum at 50S for both the summer and winter seasons. Practically all the kinetic energy of the meridional motion is associated with the moving waves.

Full access
E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, Roy Jenne, and Dennis Joseph

The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system.

The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by different countries and organizations. The system has been designed with advanced quality control and monitoring components, and can produce 1 mon of reanalysis per day on a Cray YMP/8 supercomputer. Different types of output archives are being created to satisfy different user needs, including a “quick look” CD-ROM (one per year) with six tropospheric and stratospheric fields available twice daily, as well as surface, top-of-the-atmosphere, and isentropic fields. Reanalysis information and selected output is also available on-line via the Internet (http//:nic.fb4.noaa.gov:8000). A special CDROM, containing 13 years of selected observed, daily, monthly, and climatological data from the NCEP/NCAR Reanalysis, is included with this issue. Output variables are classified into four classes, depending on the degree to which they are influenced by the observations and/or the model. For example, “C” variables (such as precipitation and surface fluxes) are completely determined by the model during the data assimilation and should be used with caution. Nevertheless, a comparison of these variables with observations and with several climatologies shows that they generally contain considerable useful information. Eight-day forecasts, produced every 5 days, should be useful for predictability studies and for monitoring the quality of the observing systems.

The 40 years of reanalysis (1957–96) should be completed in early 1997. A continuation into the future through an identical Climate Data Assimilation System will allow researchers to reliably compare recent anomalies with those in earlier decades. Since changes in the observing systems will inevitably produce perceived changes in the climate, parallel reanalyses (at least 1 year long) will be generated for the periods immediately after the introduction of new observing systems, such as new types of satellite data.

NCEP plans currently call for an updated reanalysis using a state-of-the-art system every five years or so. The successive reanalyses will be greatly facilitated by the generation of the comprehensive database in the present reanalysis.

Full access