Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: R. L. Thompson x
- Journal of Atmospheric and Oceanic Technology x
- Refine by Access: All Content x
Abstract
This paper presents preliminary results on the use of synthetic aperture radar (SAR) imagery to extract oceanographic information about the continental shelf. From late spring through early fall the thermocline on the shelf is fully developed and the entire Mid-Atlantic Bight is replete with internal waves. The surface manifestation of these internal waves is observed using the SAR on board the European Research Satellite-1. The depth of the pycnocline and the density of the surface layer can be estimated from the dispersion relation obtained from a two-layer fluid model. The other parameters that are required to make this estimate are obtained by assuming climatological bottom density, estimating the speed of propagation from the tidal-generated wave packets, and calculating the depth of the pycnocline based on the isobath where the internal waves are dissipated. This robust method for obtaining quantitative information about the structure of the shelf’s water column shows good agreement with the in situ observations from that area.
Abstract
This paper presents preliminary results on the use of synthetic aperture radar (SAR) imagery to extract oceanographic information about the continental shelf. From late spring through early fall the thermocline on the shelf is fully developed and the entire Mid-Atlantic Bight is replete with internal waves. The surface manifestation of these internal waves is observed using the SAR on board the European Research Satellite-1. The depth of the pycnocline and the density of the surface layer can be estimated from the dispersion relation obtained from a two-layer fluid model. The other parameters that are required to make this estimate are obtained by assuming climatological bottom density, estimating the speed of propagation from the tidal-generated wave packets, and calculating the depth of the pycnocline based on the isobath where the internal waves are dissipated. This robust method for obtaining quantitative information about the structure of the shelf’s water column shows good agreement with the in situ observations from that area.