Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: R. Lyman x
  • Refine by Access: All Content x
Clear All Modify Search
T. Cherubini, S. Businger, and R. Lyman


An optical turbulence algorithm has been running operationally since April 2005 at the Mauna Kea Weather Center. The algorithm makes use of information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the Pennsylvania State University–NCAR Mesoscale Model and estimates the turbulent fluctuations of the atmospheric refractive index and seeing over the summit area of Mauna Kea. To investigate the potential and limitations of the optical turbulence algorithm, one year of observed seeing data from four observatories is compared with the model forecast seeing and a statistical analysis is carried out. Sensitivity tests regarding the accuracy of the underlying numerical weather forecasts and the model’s eddy diffusivity scheme are performed. Results from a simple calibration of the optical turbulence algorithm are presented.

Full access
T. Cherubini, S. Businger, R. Lyman, and M. Chun


Atmospheric turbulence is a primary concern for astronomers. Turbulence causes amplitude and phase fluctuations in electromagnetic waves propagating through the atmosphere, constraining the maximum telescope resolution and resulting in telescope image degradation. Astronomical parameters that quantify these effects are generically referred to as seeing. Adaptive optics (AO) is used to reduce image degradation associated with optical turbulence. However, to optimize AO, knowledge of the vertical profile of turbulence and overall (integrated) seeing is needed. In this paper, an optical turbulence algorithm is described that makes use of the information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). Optical turbulence data collected on Mauna Kea during the 2002 site monitoring campaign are used to validate the algorithm, which has been implemented in operational runs of MM5 at the Mauna Kea Weather Center.

Full access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Free access