Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: R. M. Peters x
  • Refine by Access: All Content x
Clear All Modify Search
John M. Peters and Daniel R. Chavas

Abstract

It is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSEIB and MSE +KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSEIB and MSE +KE better predict quantities along trajectories than MSE alone. MSEIB is better conserved in isolated deep convection, whereas MSEIB and MSE +KE perform comparably in squall line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraft B diagnoses are universally minimized when MSEIB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSEIB yielded poorer B predictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSEIB or MSE +KE instead of MSE with properly formulated heat capacities and latent heats.

Restricted access
R. R. Rogers, M-F. Lamoureux, L. R. Bissonnette, and R. M. Peters

Abstract

The authors have used a commercially available laser ceilometer to measure vertical profiles of the optical extinction in rain. This application requires special signal processing to correct the raw data for the effects of receiver noise, high-pass filtering, and the incomplete overlap of the transmitted beam with the receiver field of view at close range. The calibration constant of the ceilometer, denoted by C, is determined from the profile of the corrected returned power in conditions of moderate attenuation in which the power is completely extinguished over a distance on the order of 1 km. In this determination, the value of the backscatter-to-extinction ratio k of the scattering medium must be specified and an allowance made for the effects of multiple scattering. These requirements impose an uncertainty on C that can amount to ±50%. An alternative to determining the calibration constant is explained, which does not require specifying k, although it assumes that k is constant with height. Using this alternative approach, the authors have estimated many extinction profiles in rain and compared them with radar reflectivity profiles measured with a UHF boundary layer wind profiler. The values of the extinction coefficient in the examples shown in this paper range from about 2 to 12 km−1 and are generally larger than the values inferred from the radar reflectivity of the rain. The implication is that aerosol particles and cloud drops, which are not visible to the radar, are important in determining the optical extinction in rain in these examples.

Full access
Erik R. Nielsen, Gregory R. Herman, Robert C. Tournay, John M. Peters, and Russ S. Schumacher

Abstract

While both tornadoes and flash floods individually present public hazards, when the two threats are both concurrent and collocated (referred to here as TORFF events), unique concerns arise. This study aims to evaluate the climatological and meteorological characteristics associated with TORFF events over the continental United States. Two separate datasets, one based on overlapping tornado and flash flood warnings and the other based on observations, were used to arrive at estimations of the instances when a TORFF event was deemed imminent and verified to have occurred, respectively. These datasets were then used to discern the geographical and meteorological characteristics of recent TORFF events. During 2008–14, TORFF events were found to be publicly communicated via overlapping warnings an average of 400 times per year, with a maximum frequency occurring in the lower Mississippi River valley. Additionally, 68 verified TORFF events between 2008 and 2013 were identified and subsequently classified based on synoptic characteristics and radar observations. In general, synoptic conditions associated with TORFF events were found to exhibit similar characteristics of typical tornadic environments, but the TORFF environment tended to be moister and have stronger synoptic-scale forcing for ascent. These results indicate that TORFF events occur with appreciable frequency and in complex meteorological scenarios. Furthermore, despite these identified differences, TORFF scenarios are not easily distinguishable from tornadic events that fail to produce collocated flash flooding, and present difficult challenges both from the perspective of forecasting and public communication.

Full access
Erik R. Nielsen, Gregory R. Herman, Robert C. Tournay, John M. Peters, and Russ S. Schumacher
Full access
John M. Peters, Erik R. Nielsen, Matthew D. Parker, Stacey M. Hitchcock, and Russ S. Schumacher

Abstract

This article investigates errors in forecasts of the environment near an elevated mesoscale convective system (MCS) in Iowa on 24–25 June 2015 during the Plains Elevated Convection at Night (PECAN) field campaign. The eastern flank of this MCS produced an outflow boundary (OFB) and moved southeastward along this OFB as a squall line. The western flank of the MCS remained quasi stationary approximately 100 km north of the system’s OFB and produced localized flooding. A total of 16 radiosondes were launched near the MCS’s eastern flank and 4 were launched near the MCS’s western flank.

Convective available potential energy (CAPE) increased and convective inhibition (CIN) decreased substantially in observations during the 4 h prior to the arrival of the squall line. In contrast, the model analyses and forecasts substantially underpredicted CAPE and overpredicted CIN owing to their underrepresentation of moisture. Numerical simulations that placed the MCS at varying distances too far to the northeast were analyzed. MCS displacement error was strongly correlated with models’ underrepresentation of low-level moisture and their associated overrepresentation of the vertical distance between a parcel’s initial height and its level of free convection (, which is correlated with CIN). The overpredicted in models resulted in air parcels requiring unrealistically far northeastward travel in a region of gradual meso-α-scale lift before these parcels initiated convection. These results suggest that erroneous MCS predictions by NWP models may sometimes result from poorly analyzed low-level moisture fields.

Full access
J. N. Moum, D. Hebert, C. A. Paulson, D. R. Caldwell, M. J. McPhaden, and H. Peters

Abstract

Appearing in this issue of the Journal of Physical Oceanography are three papers that present new observations of a distinct, narrow band, and diurnally varying signal in temperature records obtained in the low Richardson number shear flow above the core of the equatorial undercurrent. Moored data suggest that the intrinsic frequency of the signal is near the local buoyancy frequency, while towed data indicate that the horizontal wavelength in the zonal direction is 150–250 m. Coincident microstructure profiling shows that this signal is associated with bursts of turbulent mixing, it seems that this narrowband signal represents the signature of instabilities that ultimately cause the turbulence observed in the equatorial thermocline. Common problems in interpreting the physics behind the signature are discussed here.

Full access
Matthew C. Brown, Christopher J. Nowotarski, Andrew R. Dean, Bryan T. Smith, Richard L. Thompson, and John M. Peters

Abstract

The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.

Restricted access
E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett

Abstract

The performance of a 94-GHz radar is evaluated for a variety of cloud conditions. Descriptions of the radar hardware, signal processing, and calibration provide an overview of the radar's capabilities. An important component of the signal processing is the application of two cloud-mask schemes to the data to provide objective estimates of cloud boundaries and to detect significant returns that would otherwise be discarded if a simple threshold method for delectability was applied to the return power. Realistic profiles of atmospheric pressure, temperature, and water vapor are used in a radiative transfer model to address clear-sky attenuation. A physically relevant study of beam extinction and backscattering by clouds is attempted by modeling cloud drop size distributions with a gamma distribution over a range of number concentrations, particle mean diameters, and distribution shape factors; cloud liquid water contents and mean drop size diameters reported in the literature are analyzed in this context. Results of observations of a number of cloud structures, including marine strato- cumulus, cirrus, and stratus and cirrus associated with a midlatitude cyclone are described.

Full access
Michael F. Jasinski, Jordan S. Borak, Sujay V. Kumar, David M. Mocko, Christa D. Peters-Lidard, Matthew Rodell, Hualan Rui, Hiroko K. Beaudoing, Bruce E. Vollmer, Kristi R. Arsenault, Bailing Li, John D. Bolten, and Natthachet Tangdamrongsub

Abstract

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980–2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125° × 0.125° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann–Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr−1 in the upper Great Plains and Northeast to −1 to −9 mm yr−1 in the West and South, net radiation flux trends range from +0.05 to +0.20 W m−2 yr−1 in the East to −0.05 to −0.20 W m−2 yr−1 in the West, and U.S.-wide temperature trends average about +0.03 K yr−1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr−1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m−2 yr−1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr−1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

Open access
M. J. Best, G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, B. Decharme, P. A. Dirmeyer, J. Dong, M. Ek, Z. Guo, V. Haverd, B. J. J. van den Hurk, G. S. Nearing, B. Pak, C. Peters-Lidard, J. A. Santanello Jr., L. Stevens, and N. Vuichard

Abstract

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.

Full access