Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: R. Merz x
  • All content x
Clear All Modify Search
Yonggang Liu, Robert H. Weisberg, and Clifford R. Merz

Abstract

Concurrently operated on the West Florida shelf for the purpose of observing surface currents are three long-range (4.9 MHz) Coastal Ocean Dynamics Applications Radar (CODAR) SeaSonde and two median-range (12.7 MHz) Wellen Radar (WERA) high-frequency (HF) radar systems. These HF radars overlook an array of moored acoustic Doppler current profilers (ADCPs), three of which are presently within the radar footprint. Analyzed herein are 3 months of simultaneous observations. Both the SeaSonde and WERA systems generally agree with the ADCPs to within root-mean-square differences (rmsd) for hourly radial velocity components of 5.1–9.2 and 3.8–6.5 cm s−1 for SeaSonde and WERA, respectively, and within rmsd for 36-h low-pass filtered radial velocity components of 2.8–6.0 and 2.2–4.3 cm s−1 for SeaSonde and WERA, respectively. The bearing offset and tidal and subtidal currents of total velocities are also assessed using the ADCP data. Despite differences in a variety of aspects between the direction-finding CODAR SeaSonde (long range, effective depth of 2.4 m, integration time of 4 h, and idealized antenna patterns) and the beam-forming WERA (median range, effective depth of 0.9 m, and integration time of 1 h), both HF radar systems demonstrated good surface current mapping capability. The differences between the velocities measured with the HF radar and the ADCP are sufficiently small in this low-energy shelf that much of these rmsd values may be accounted for by the expected measurement differences due to the horizontal, vertical, and temporal sampling differences of the ocean current observing systems used.

Full access
Yonggang Liu, Robert H. Weisberg, Clifford R. Merz, Sage Lichtenwalner, and Gary J. Kirkpatrick

Abstract

Three long-range (5 MHz) Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde HF radars overlooking an array of as many as eight moored acoustic Doppler current profilers (ADCPs) have operated on the West Florida Shelf since September 2003 for the purpose of observing the coastal ocean currents. HF radar performance on this low-energy (currents and waves) continental shelf is evaluated with respect to data returns, the rms differences between the HF radar and the ADCP radial currents, bearing offsets, and radial velocity uncertainties. Possible environmental factors affecting the HF radar performance are discussed, with the findings that both the low-energy sea state and the unfavorable surface wave directions are the main limiting factors for these HF radar observations of currents on the WFS. Despite the challenge of achieving continuous backscatter from this low-energy environment, when acquired the data quality is good in comparison with the ADCP measurements. The rms differences range from 6 to 10 cm s−1 for hourly and from 3 to 6 cm s−1 for 36-h low-pass-filtered radial currents, respectively. Bearing offsets are in the range from −15° to +9°. Coherent variations of the HF radar and ADCP radial currents are seen across both tidal and subtidal frequency bands. By examining the HF radar radial velocities at low wave energy, it is found that the data returns decrease rapidly for significant wave heights smaller than 1 m, and that the rms differences between the HF radar and ADCP radials are degraded when the significant wave height is smaller than 0.3 m.

Full access
B. Wolf, C. Chwala, B. Fersch, J. Garvelmann, W. Junkermann, M. J. Zeeman, A. Angerer, B. Adler, C. Beck, C. Brosy, P. Brugger, S. Emeis, M. Dannenmann, F. De Roo, E. Diaz-Pines, E. Haas, M. Hagen, I. Hajnsek, J. Jacobeit, T. Jagdhuber, N. Kalthoff, R. Kiese, H. Kunstmann, O. Kosak, R. Krieg, C. Malchow, M. Mauder, R. Merz, C. Notarnicola, A. Philipp, W. Reif, S. Reineke, T. Rödiger, N. Ruehr, K. Schäfer, M. Schrön, A. Senatore, H. Shupe, I. Völksch, C. Wanninger, S. Zacharias, and H. P. Schmid

Abstract

ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.

Full access