Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: R. Nieto x
  • Refine by Access: All Content x
Clear All Modify Search
G. Delgado, Luiz A. T. Machado, Carlos F. Angelis, Marcus J. Bottino, Á. Redaño, J. Lorente, L. Gimeno, and R. Nieto

Abstract

This paper discusses the basis for a new rainfall estimation method using geostationary infrared and visible data. The precipitation radar on board the Tropical Rainfall Measuring Mission satellite is used to train the algorithm presented (which is the basis of the estimation method) and the further intercomparison. The algorithm uses daily Geostationary Operational Environmental Satellite infrared–visible (IR–VIS) cloud classifications together with radiative and evolution properties of clouds over the life cycle of mesoscale convective systems (MCSs) in different brightness temperature (Tb) ranges. Despite recognition of the importance of the relationship between the life cycle of MCSs and the rainfall rate they produce, this relationship has not previously been quantified precisely. An empirical relationship is found between the characteristics that describe the MCSs’ life cycle and the magnitude of rainfall rate they produce. Numerous earlier studies focus on this subject using cloud-patch or pixel-based techniques; this work combines the two techniques. The algorithm performs reasonably well in the case of convective systems and also for stratiform clouds, although it tends to overestimate rainfall rates. Despite only using satellite information to initialize the algorithm, satisfactory results were obtained relative to the hydroestimator technique, which in addition to the IR information uses extra satellite data such as moisture and orographic corrections. This shows that the use of IR–VIS cloud classification and MCS properties provides a robust basis for creating a future estimation method incorporating humidity Eta field outputs for a moisture correction, digital elevation models combined with low-level moisture advection for an orographic correction, and a nighttime cloud classification.

Full access
Tim Li, Abdallah Abida, Laura S. Aldeco, Eric J. Alfaro, Lincoln M. Alves, Jorge A. Amador, B. Andrade, Julian Baez, M. Yu. Bardin, Endalkachew Bekele, Eric Broedel, Brandon Bukunt, Blanca Calderón, Jayaka D. Campbell, Diego A. Campos Diaz, Gilma Carvajal, Elise Chandler, Vincent. Y. S. Cheng, Chulwoon Choi, Leonardo A. Clarke, Kris Correa, Felipe Costa, A. P. Cunha, Mesut Demircan, R. Dhurmea, Eliecer A. Díaz, M. ElKharrim, Bantwale D. Enyew, Jhan C. Espinoza, Amin Fazl-Kazem, Nava Fedaeff, Z. Feng, Chris Fenimore, S. D. Francis, Karin Gleason, Charles “Chip” P. Guard, Indra Gustari, S. Hagos, Richard R. Heim Jr., Rafael Hernández, Hugo G. Hidalgo, J. A. Ijampy, Annie C. Joseph, Guillaume Jumaux, Khadija Kabidi, Johannes W. Kaiser, Pierre-Honore Kamsu-Tamo, John Kennedy, Valentina Khan, Mai Van Khiem, Khatuna Kokosadze, Natalia N. Korshunova, Andries C. Kruger, Nato Kutaladze, L. Labbé, Mónika Lakatos, Hoang Phuc Lam, Mark A. Lander, Waldo Lavado-Casimiro, T. C. Lee, Kinson H. Y. Leung, Andrew D. Magee, Jostein Mamen, José A. Marengo, Dora Marín, Charlotte McBride, Lia Megrelidze, Noelia Misevicius, Y. Mochizuki, Aurel Moise, Jorge Molina-Carpio, Natali Mora, Awatif E. Mostafa, uan José Nieto, Lamjav Oyunjargal, Reynaldo Pascual Ramírez, Maria Asuncion Pastor Saavedra, Uwe Pfeifroth, David Phillips, Madhavan Rajeevan, Andrea M. Ramos, Jayashree V. Revadekar, Miliaritiana Robjhon, Ernesto Rodriguez Camino, Esteban Rodriguez Guisado, Josyane Ronchail, Benjamin Rösner, Roberto Salinas, Amal Sayouri, Carl J. Schreck III, Serhat Sensoy, A. Shimpo, Fatou Sima, Adam Smith, Jacqueline Spence, Sandra Spillane, Arne Spitzer, A. K. Srivastava, José L. Stella, Kimberly A. Stephenson, Tannecia S. Stephenson, Michael A. Taylor, Wassila Thiaw, Skie Tobin, Dennis Todey, Katja Trachte, Adrian R. Trotman, Gerard van der Schrier, Cedric J. Van Meerbeeck, Ahad Vazifeh, José Vicencio Veloso, Wei Wang, Fei Xin, Peiqun Zhang, Zhiwei Zhu, and Jonas Zucule
Full access