Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: R. Quinn Thomas x
  • Refine by Access: All Content x
Clear All Modify Search
Annalisa Bracco, Matthew C. Long, Naomi M. Levine, R. Quinn Thomas, Curtis Deutsch, and Galen A. McKinley
Full access
Katharine S. Law, Andreas Stohl, Patricia K. Quinn, Charles A. Brock, John F. Burkhart, Jean-Daniel Paris, Gerard Ancellet, Hanwant B. Singh, Anke Roiger, Hans Schlager, Jack Dibb, Daniel J. Jacob, Steve R. Arnold, Jacques Pelon, and Jennie L. Thomas

Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at midlatitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate–chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed.

Full access
John H. Seinfeld, Gregory R. Carmichael, Richard Arimoto, William C. Conant, Frederick J. Brechtel, Timothy S. Bates, Thomas A. Cahill, Antony D. Clarke, Sarah J. Doherty, Piotr J. Flatau, Barry J. Huebert, Jiyoung Kim, Krzysztof M. Markowicz, Patricia K. Quinn, Lynn M. Russell, Philip B. Russell, Atsushi Shimizu, Yohei Shinozuka, Chul H. Song, Youhua Tang, Itsushi Uno, Andrew M. Vogelmann, Rodney J. Weber, Jung-Hun Woo, and Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.

Full access