Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: R. S. Plant x
  • All content x
Clear All Modify Search
R. S. Plant and S. E. Belcher

Abstract

A dry three-dimensional baroclinic life cycle model is used to investigate the role of turbulent fluxes of heat and momentum within the boundary layer on midlatitude cyclones. Simulations are performed of life cycles for two basic states: with and without turbulent fluxes. The different basic states produce cyclones with contrasting frontal and mesoscale flow structures. The analysis focuses on the generation of potential vorticity (PV) in the boundary layer and its subsequent transport into the free troposphere. The dynamic mechanism through which friction mitigates a barotropic vortex is that of Ekman pumping. This has often been assumed to also be the dominant mechanism for baroclinic developments. The PV framework highlights an additional, baroclinic mechanism. Positive PV is generated baroclinically due to friction to the northeast of a surface low and is transported out of the boundary layer by a cyclonic conveyor belt flow. The result is an anomaly of increased static stability in the lower troposphere, which restricts the growth of the baroclinic wave. The reduced coupling between lower and upper levels can be sufficient to change the character of the upper-level evolution of the mature wave. The basic features of the baroclinic damping mechanism are robust for different frontal structures, with and without turbulent heat fluxes, and for the range of surface roughness found over the oceans.

Full access
R. S. Plant and G. C. Craig

Abstract

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Full access
C. L. Daleu, S. J. Woolnough, and R. S. Plant

Abstract

A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative–convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions.

Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtained in the reference-column configuration if the two simulated columns have very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The reference-column configuration has been used to study the convection in a local region under the influence of a large-scale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.

Full access
C. L. Daleu, S. J. Woolnough, and R. S. Plant

Abstract

Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, the authors used a coupled-column model. It consists of two cloud-resolving models that are fully coupled via a large-scale circulation that is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak temperature gradient approach.

The simulations of the transition are initialized from coupled-column simulations over nonuniform surface forcing, and the transition is forced in the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation that systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects.

A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate in the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.

Open access
G. A. Efstathiou, R. S. Plant, and M.-J. M. Bopape

Abstract

A scale-dependent Lagrangian-averaged dynamic Smagorinsky subgrid scheme with stratification effects is used to simulate the evolving convective boundary layer of the Wangara (Australia) case study in the gray-zone regime (specifically, for grid lengths from 25 to 400 m). The dynamic Smagorinsky and standard Smagorinsky approaches are assessed for first- and second-order quantities in comparison with results derived from coarse-grained large-eddy simulation (LES) fields. In the LES regime, the subgrid schemes produce very similar results, albeit with some modest differences near the surface. At coarser resolutions, the use of the standard Smagorinsky approach significantly delays the onset of resolved turbulence, with the delay increasing with coarsening resolution. In contrast, the dynamic Smagorinsky scheme much improves the spinup and so is also able to maintain consistency with the LES temperature profiles at the coarser resolutions. Moreover, the resolved part of the turbulence reproduces well the turbulence profiles obtained from the coarse-grained fields, especially in the near gray zone. The dynamic scheme does become somewhat overenergetic with further coarsening of the resolution, especially near the surface. The dynamic scheme reaches its limit in the current configuration when the test filter starts to sample at the unresolved scales, returning very small Smagorinsky coefficients. Sensitivity tests reveal that the dynamic model can adapt to changes in the imposed numerical or subgrid diffusion by adjusting the Smagorinsky constant to the changing flow field and minimizing the dissipation effects on the resolved turbulence structures.

Full access
J.-I. Yano, E. Machulskaya, P. Bechtold, and R. S. Plant
Full access
B. W. Atkinson, J-G. Li, and R. S. Plant

Abstract

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.

Full access
Seonaid R. A. Dey, Giovanni Leoncini, Nigel M. Roberts, Robert S. Plant, and Stefano Migliorini

Abstract

With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.

Full access
D. L. A. Flack, P. A. Clark, C.E. Halliwell, N. M. Roberts, S. L. Gray, R. S. Plant, and H. W. Lean

Abstract

Convection-permitting forecasts have improved the forecasts of flooding from intense rainfall. However, probabilistic forecasts, generally based upon ensemble methods, are essential to quantify forecast uncertainty. This leads to a need to understand how different aspects of the model system affect forecast behaviour. We compare the uncertainty due to initial and boundary condition (IBC) perturbations and boundary-layer turbulence using a super ensemble (SE) created to determine the influence of 12 IBC perturbations vs. 12 stochastic boundary-layer (SBL) perturbations constructed using a physically-based SBL scheme. We consider two mesoscale extreme precipitation events. For each we run a 144–member SE. The SEs are analysed to consider the growth of differences between the simulations, and the spatial structure and scales of those differences. The SBL perturbations rapidly spin-up, typically within 12 h of precipitation commencing. The SBL perturbations eventually produce spread that is not statistically different from the spread produced by the IBC perturbations, though in one case there is initially increased spread from the IBC perturbations. Spatially, the growth from IBC occurs on larger scales than that produced by the SBL perturbations (typically by an order of magnitude). However, analysis across multiple scales shows that the SBL scheme produces a random relocation of precipitation up to the scale at which the ensemble members agree with each other. This implies that statistical post-processing can be used instead of running larger ensembles. Use of these statistical post-processing techniques could lead to more reliable probabilistic forecasts of convective events and their associated hazards.

Open access
D. L. A. Flack, P. A. Clark, C. E. Halliwell, N. M. Roberts, S. L. Gray, R. S. Plant, and H. W. Lean

Abstract

Convection-permitting forecasts have improved the forecasts of flooding from intense rainfall. However, probabilistic forecasts, generally based upon ensemble methods, are essential to quantify forecast uncertainty. This leads to a need to understand how different aspects of the model system affect forecast behavior. We compare the uncertainty due to initial and boundary condition (IBC) perturbations and boundary layer turbulence using a superensemble (SE) created to determine the influence of 12 IBC perturbations versus 12 stochastic boundary layer (SBL) perturbations constructed using a physically based SBL scheme. We consider two mesoscale extreme precipitation events. For each, we run a 144-member SE. The SEs are analyzed to consider the growth of differences between the simulations, and the spatial structure and scales of those differences. The SBL perturbations rapidly spin up, typically within 12 h of precipitation commencing. The SBL perturbations eventually produce spread that is not statistically different from the spread produced by the IBC perturbations, though in one case there is initially increased spread from the IBC perturbations. Spatially, the growth from IBC occurs on larger scales than that produced by the SBL perturbations (typically by an order of magnitude). However, analysis across multiple scales shows that the SBL scheme produces a random relocation of precipitation up to the scale at which the ensemble members agree with each other. This implies that statistical postprocessing can be used instead of running larger ensembles. Use of these statistical postprocessing techniques could lead to more reliable probabilistic forecasts of convective events and their associated hazards.

Open access