Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: R. Ware x
  • Refine by Access: All Content x
Clear All Modify Search
Steven R. Chiswell, Steven Businger, Michael Bevis, Fredrick Solheim, Christian Rocken, and Randolph Ware

Abstract

Water vapor radiometer (WVR) retrieval algorithms require a priori information on atmospheric conditions along the line of sight of the radiometer in order to derive opacities from observed brightness temperatures. This paper's focus is the mean radiating temperature of the atmosphere (T mr), which is utilized in these algorithms to relate WVR measurements to integrated water vapor. Current methods for specifying T mr rely on the climatology of the WVR site-for example, a seasonal average-or information from nearby soundings to specify T mr. However, values of T mr, calculated from radiosonde data, not only vary according to site and season but also exhibit large fluctuations in response to local weather conditions. By utilizing output from numerical weather prediction (NWP) models, T mr can be accurately prescribed for an arbitrary WVR site at a specific time. Temporal variations in local weather conditions can he resolved by NWP models on timescales shorter than standard radiosonde soundings.

Currently used methods for obtaining T mr are reviewed. Values of T mr obtained from current methods and this new approach are compared to those obtained from in situ radiosonde soundings. The improvement of the T mr calculation using available model forecast data rather than climatological values yields a corresponding improvement of comparable magnitude in the retrieval of atmospheric opacity. Use of forecast model data relieves a WVR site of its dependency on local climatology or the necessity of a nearby sounding, allowing more accurate retrieval of observed conditions and increased flexibility in choosing site location. Furthermore, it is found that the calculation of precipitable water by means of atmospheric opacities does not require time-dependent tuning parameters when model data are used. These results were obtained using an archived subset of the full nested grid model output. The added horizontal and vertical resolution of operational data should further improve this approach.

Full access
K. R. Knupp, T. Coleman, D. Phillips, R. Ware, D. Cimini, F. Vandenberghe, J. Vivekanandan, and E. Westwater

Abstract

Short-period (1–5 min) temperature and humidity soundings up to 10-km height are retrieved from ground-based 12-channel microwave radiometer profiler (MWRP) observations. In contrast to radiosondes, the radiometric retrievals provide very high temporal resolution (1 min or less) of thermodynamic profiles, but the vertical resolution, which declines in proportion to the height above ground level, is lower. The high temporal resolution is able to resolve detailed meso-γ-scale thermodynamic and limited microphysical features of various rapidly changing mesoscale and/or hazardous weather phenomena. To illustrate the MWRP capabilities and potential benefits to research and operational activities, the authors present example radiometric retrievals from a variety of dynamic weather phenomena including upslope supercooled fog, snowfall, a complex cold front, a nocturnal bore, and a squall line accompanied by a wake low and other rapid variations in low-level water vapor and temperature.

Full access
I. Gultepe, T. Kuhn, M. Pavolonis, C. Calvert, J. Gurka, A. J. Heymsfield, P. S. K. Liu, B. Zhou, R. Ware, B. Ferrier, J. Milbrandt, and B. Bernstein

Ice fog and frost occur commonly (at least 26% of the time) in the northern latitudes and Arctic regions during winter at temperatures usually less than about –15°C. Ice fog is strongly related to frost formation—a major aviation hazard in the northern latitudes. In fact, it may be considered a more dangerous event than snow because of the stronger aircraft surface adhesion compared to snow particles. In the winter of 2010/11, the Fog Remote Sensing and Modeling–Ice Fog (FRAM-IF) project was organized near Yellowknife International Airport, Northwest Territories, Canada, with the main goals of advancing understanding of ice fog microphysical and visibility characteristics, and improving its prediction using forecast models and remotesensing retrievals. Approximately 40 different sensors were used to measure visibility, precipitation, ice particle spectra, vertical thermodynamic profiles, and ceiling height. Fog coverage and visibility parameters were estimated using both Geostationary Operational Environmental Satellites (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. During this project, the inversion layer usually was below a height of 1.5 km. High humidity typically was close to the ground, frequently producing ice fog, frost, and light snow precipitation. At low temperatures, snow crystals can be swept away by a very low wind speed (∼1 m s−1). Ice fog during the project was not predicted by any forecast model. These preliminary results in the northern latitudes suggest that ice fog and frost studies, over the Arctic regions, can help us to better understand ice microphysical processes such as ice nucleation, visibility, and parameterizations of ice fog.

Full access
Steven Businger, Steven R. Chiswell, Michael Bevis, Jingping Duan, Richard A. Anthes, Christian Rocken, Randolph H. Ware, Michael Exner, T. VanHove, and Fredrick S. Solheim

This paper provides an overview of applications of the Global Positioning System (GPS) for active measurement of the Earth's atmosphere. Microwave radio signals transmitted by GPS satellites are delayed (refracted) by the atmosphere as they propagate to Earth-based GPS receivers or GPS receivers carried on low Earth orbit satellites.

The delay in GPS signals reaching Earth-based receivers due to the presence of water vapor is nearly proportional to the quantity of water vapor integrated along the signal path. Measurement of atmospheric water vapor by Earth-based GPS receivers was demonstrated during the GPS/STORM field project to be comparable and in some respects superior to measurements by ground-based water vapor radiometers. Increased spatial and temporal resolution of the water vapor distribution provided by the GPS/STORM network proved useful in monitoring the moisture-flux convergence along a dryline and the decrease in integrated water vapor associated with the passage of a midtropospheric cold front, both of which triggered severe weather over the area during the course of the experiment.

Given the rapid growth in regional networks of continuously operating Earth-based GPS receivers currently being implemented, an opportunity exists to observe the distribution of water vapor with increased spatial and temporal coverage, which could prove valuable in a range of operational and research applications in the atmospheric sciences.

The first space-based GPS receiver designed for sensing the Earth's atmosphere was launched in April 1995. Phase measurements of GPS signals as they are occluded by the atmosphere provide refractivity profiles (see the companion article by Ware et al. on page 19 of this issue). Water vapor limits the accuracy of temperature recovery below the tropopause because of uncertainty in the water vapor distribution. The sensitivity of atmospheric refractivity to water vapor pressure, however, means that refractivity profiles can in principle yield information on the atmospheric humidity distribution given independent information on the temperature and pressure distribution from NWP models or independent observational data.

A discussion is provided of some of the research opportunities that exist to capitalize on the complementary nature of the methods of active atmospheric monitoring by GPS and other observation systems for use in weather and climate studies and in numerical weather prediction models.

Full access
R. Ware, M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth

This paper provides an overview of the methodology of and describes preliminary results from an experiment called GPS/MET (Global Positioning System/Meteorology), in which temperature soundings are obtained from a low Earth-orbiting satellite using the radio occultation technique. Launched into a circular orbit of about 750-km altitude and 70° inclination on 3 April 1995, a small research satellite, MicroLab 1, carried a laptop-sized radio receiver. Each time this receiver rises and sets relative to the 24 operational GPS satellites, the GPS radio waves transect successive layers of the atmosphere and are bent (refracted) by the atmosphere before they reach the receiver, causing a delay in the dual-frequency carrier phase observations sensed by the receiver. During this occultation, GPS limb sounding measurements are obtained from which vertical profiles of atmospheric refractivity can be computed. The refractivity is a function of pressure, temperature, and water vapor and thus provides information on these variables that has the potential to be useful in weather prediction and weather and climate research.

Because of the dependence of refractivity on both temperature and water vapor, it is generally impossible to compute both variables from a refractivity sounding. However, if either temperature or water vapor is known from independent measurements or from model predictions, the other variable may be calculated. In portions of the atmosphere where moisture effects are negligible (typically above 5–7 km), temperature may be estimated directly from refractivity.

This paper compares a representative sample of 11 temperature profiles derived from GPS/MET soundings (assuming a dry atmosphere) with nearby radiosonde and high-resolution balloon soundings and the operational gridded analysis of the National Centers for Environmental Prediction (formerly the National Meteorological Center). One GPS/MET profile was obtained at a location where a temperature profile from the Halogen Occultation Experiment was available for comparison. These comparisons show that accurate vertical temperature profiles may be obtained using the GPS limb sounding technique from approximately 40 km to about 5–7 km in altitude where moisture effects are negligible. Temperatures in this region usually agree within 2°C with the independent sources of data. The GPS/MET temperature profiles show vertical resolution of about 1 km and resolve the location and minimum temperature of the tropopause very well. Theoretical temperature accuracy is better than 0.5°C at the tropopause, degrading to about 1°C at 40-km altitude.

Above 40 km and below 5 km, these preliminary temperature retrievals show difficulties. In the upper atmosphere, the errors result from initial temperature and pressure assumptions in this region and initial ionospheric refraction assumptions. In the lower troposphere, the errors appear to be associated with multipath effects caused by large gradients in refractivity primarily due to water vapor distribution.

Full access