Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Raúl Valenzuela x
  • All content x
Clear All Modify Search
Raul A. Valenzuela and David E. Kingsmill

Abstract

This study documents orographic precipitation forcing along the coastal mountains of Northern California during the landfall of a significant winter storm over the period 16–18 February 2004. The primary observing asset is a scanning X-band Doppler radar deployed on the coast at Fort Ross, California, which provides low-level (e.g., below 1 km MSL) horizontal and vertical scans of radial velocity and reflectivity to characterize airflow and precipitation structures. Further context is provided by a wind-profiling radar, a radio acoustic sounding system (RASS), balloon soundings, buoys, a GPS receiver, and surface meteorological sensors. The winter storm is divided into two episodes, each having pre-cold-frontal low-level jet (LLJ) structures and atmospheric river characteristics. Episode 1 has a corridor of terrain-trapped airflow (TTA) that forms an interface with the LLJ. The interface extends ~25 km offshore in a ~0.5-km vertical layer, and the western edge of this interface near the ocean surface advances toward the coast over the course of ~5 h. The TTA acts as a dynamically driven barrier, so that the incoming LLJ slopes upward offshore below 1.5 km MSL and precipitation is enhanced over the ocean and near the coast. The absence of a TTA in episode 2 allows the cross-barrier flow to slope upward and enhance precipitation directly over the coastal mountains. A theoretical analysis favors the hypothesis that a gap flow exiting the Petaluma Gap forces the TTA.

Full access
Raul A. Valenzuela and David E. Kingsmill

Abstract

This study develops an objective method of identifying terrain-trapped airflows (TTAs) along the coast of Northern California and documenting their impact on orographic rainfall. TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. A 13-winter-seasons dataset is employed, including observations from a 915-MHz wind profiling radar along the coast at Bodega Bay (BBY, 15 m MSL) and surface meteorology stations at BBY and in the coastal mountains at Cazadero (CZD, 478 m MSL). A subset of rainy hours exhibits a profile with enhanced vertical shear and an easterly wind maximum in the lowest 500 m MSL, roughly the same depth as the nearby coastal terrain. Both flow features have a connection to TTAs along the coast of Northern California. Based on the average orientation (320°–140°) and altitude of nearby topography, mean wind direction in the lowest 500 m MSL () between 0°–140° is used as the initial criterion to identify TTA conditions. Application of this threshold yields a CZD/BBY rainfall ratio of 1.4 (3.2) for TTA (NO TTA) conditions. More detailed analysis of the relationship between and orographic rainfall reveals that an upper threshold of 150° more precisely divides the TTA and NO-TTA regimes. A sensitivity analysis and comparison with a TTA documented in a previous case study show that the best TTA identification criteria correspond to with a duration of at least 2 h. This objective identification method is applied to seven case studies in Part II of the present study.

Full access
Raul A. Valenzuela and David E. Kingsmill

Abstract

This study documents the mean properties and variability of kinematic and precipitation structures associated with orographic precipitation along the coast of Northern California in the context of terrain-trapped airflows (TTAs). TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. Seven land-falling winter storms are examined with observations from a scanning X-band Doppler radar deployed on the coast at Fort Ross, California. Additional information is provided by a 915-MHz wind-profiling radar, surface meteorology, a GPS receiver, and balloon soundings. The composite kinematic structure during TTA conditions exhibits a significant horizontal gradient of wind direction from the coast to approximately 50 km offshore and a low-level jet (LLJ) that surmounts a weaker airflow offshore corresponding to the TTA, with a zone of enhanced precipitation evident between ~5 and 25 km offshore and oriented nearly parallel to the coastline. Conversely, the composite kinematic structure during NO-TTA conditions exhibits a smaller offshore horizontal gradient of wind direction and precipitation structures are generally enhanced within km of the coastline. Interstorm variability analysis reveals significant variations in kinematic structures during both TTA and NO-TTA conditions, whereas significant variations in precipitation structures are only evident during TTA conditions. The interstorm analysis also illustrates more clearly how LLJ vertical structures evident during NO-TTA conditions exhibit ascent along the coast and over the coastal mountains, which is in contrast to TTA conditions where the ascent occurs offshore and over the TTA.

Full access
Raúl A. Valenzuela and René D. Garreaud

Abstract

Extreme rainfall events are thought to be one of the major threats of climate change given an increase of water vapor available in the atmosphere. However, before projecting future changes in extreme rainfall events, it is mandatory to know current patterns. In this study we explore extreme daily rainfall events along central-southern Chile with emphasis in their spatial distribution and concurrent synoptic-scale circulation. Surface rain gauges and reanalysis products from the Climate Forecast System Reanalysis are employed to unravel the dependency between extreme rainfall and horizontal water vapor fluxes. Results indicate that extreme rainfall events can occur everywhere, from the subtropical to extratropical latitudes, but their frequency increases where terrain has higher altitude, especially over the Andes Mountains. The majority of these events concentrate in austral winter, last a single day, and encompass a north–south band of about 200 km in length. Composited synoptic analyses identified extreme rainfall cases dominated by northwesterly (NW) and westerly (W) moisture fluxes. Some features of the NW group include a 300-hPa trough projecting from the extratropics to subtropics, a surface-level depression, and cyclonic winds at 850 hPa along the coast associated with integrated water vapor (IWV) > 30 mm. Conversely, features in the W group include both a very weak 300-hPa trough and surface depression, as well as coastal westerly winds associated with IWV > 30 mm. About half of extreme daily rainfall is associated with an atmospheric river. Extreme rainfall observed in W (NW) cases has a strong orographic (synoptic) forcing. In addition, W cases are, on average, warmer than NW cases, leading to an amplified hydrological response.

Full access
Maximiliano Viale, Raúl Valenzuela, René D. Garreaud, and F. Martin Ralph

Abstract

This study quantifies the impact of atmospheric rivers (ARs) on precipitation in southern South America. An AR detection algorithm was developed based on integrated water vapor transport (IVT) from 6-hourly CFSR reanalysis data over a 16-yr period (2001–16). AR landfalls were linked to precipitation using a comprehensive observing network that spanned large variations in terrain along and across the Andes from 27° to 55°S, including some sites with hourly data. Along the Pacific (west) coast, AR landfalls are most frequent between 38° and 50°S, averaging 35–40 days yr−1. This decreases rapidly to the south and north of this maximum, as well as to the east of the Andes. Landfalling ARs are more frequent in winter/spring (summer/fall) to the north (south) of ~43°S. ARs contribute 45%–60% of the annual precipitation in subtropical Chile (37°–32°S) and 40%–55% along the midlatitude west coast (37°–47°S). These values significantly exceed those in western North America, likely due to the Andes being taller. In subtropical and midlatitude regions, roughly half of all events with top-quartile precipitation rates occur under AR conditions. Median daily and hourly precipitation in ARs is 2–3 times that of other storms. The results of this study extend knowledge of the key roles of ARs on precipitation, weather, and climate in the South American region. They enable comparisons with other areas globally, provide context for specific events, and support local nowcasting and forecasting.

Full access
José Vicencio, Roberto Rondanelli, Diego Campos, Raúl Valenzuela, René Garreaud, Alejandra Reyes, Rodrigo Padilla, Ricardo Abarca, Camilo Barahona, Rodrigo Delgado, and Gabriela Nicora

Capsule

An unprecedented tornado outbreak occurred in Southern Chile, with at least seven tornadoes reported over a period of 24 hours, causing substantial damage, dozens of injuries, and one fatality.

Full access
Adam K. Massmann, Justin R. Minder, René D. Garreaud, David E. Kingsmill, Raul A. Valenzuela, Aldo Montecinos, Sara Lynn Fults, and Jefferson R. Snider

Abstract

The Chilean Coastal Orographic Precipitation Experiment (CCOPE) was conducted during the austral winter of 2015 (May–August) in the Nahuelbuta Mountains (peak elevation 1.3 km MSL) of southern Chile (38°S). CCOPE used soundings, two profiling Micro Rain Radars, a Parsivel disdrometer, and a rain gauge network to characterize warm and ice-initiated rain regimes and explore their consequences for orographic precipitation. Thirty-three percent of foothill rainfall fell during warm rain periods, while 50% of rainfall fell during ice-initiated periods. Warm rain drop size distributions were characterized by many more and relatively smaller drops than ice-initiated drop size distributions. Both the portion and properties of warm and ice-initiated rainfall compare favorably with observations of coastal mountain rainfall at a similar latitude in California. Orographic enhancement is consistently strong for rain of both types, suggesting that seeding from ice aloft is not a requisite for large orographic enhancement. While the data suggest that orographic enhancement may be greater during warm rain regimes, the difference in orographic enhancement between regimes is not significant. Sounding launches indicate that differences in orographic enhancement are not easily explainable by differences in low-level moisture flux or nondimensional mountain height between the regimes.

Full access