Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Rae Melloh x
- Refine by Access: All Content x
Abstract
Forest canopies influence the proportion of the land surface that is visible from above, or the viewable gap fraction (VGF). The VGF limits the amount of information available in satellite data about the land surface, such as snow cover in forests. Efforts to recover fractional snow cover from the spectral mixture analysis model Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area and grain size (MODSCAG) indicate the importance of view angle effects in forested landscapes. The VGF can be estimated using both hemispherical photos and forest canopy models. For a set of stands in the Cold Land Field Processes Experiment (CLPX) sites in the Fraser Experimental Forest in Colorado, the convergence of both measurements and models of the VGF as a function of view angle supports the idea that VGF can be characterized as a function of forest properties. A simple geometric optical (GO) model that includes only between-crown gaps can capture the basic shape of the VGF as a function of view zenith angle. However, the GO model tends to underestimate the VGF compared with estimates derived from hemispherical photos, particularly at high view angles. The use of a more complicated geometric optical–radiative transfer (GORT) model generally improves estimates of the VGF by taking into account within-crown gaps. Small footprint airborne lidar data are useful for mapping forest cover and height, which makes the parameterization of the GORT model possible over a landscape. Better knowledge of the angular distribution of gaps in forest canopies holds promise for improving remote sensing of snow cover fraction.
Abstract
Forest canopies influence the proportion of the land surface that is visible from above, or the viewable gap fraction (VGF). The VGF limits the amount of information available in satellite data about the land surface, such as snow cover in forests. Efforts to recover fractional snow cover from the spectral mixture analysis model Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area and grain size (MODSCAG) indicate the importance of view angle effects in forested landscapes. The VGF can be estimated using both hemispherical photos and forest canopy models. For a set of stands in the Cold Land Field Processes Experiment (CLPX) sites in the Fraser Experimental Forest in Colorado, the convergence of both measurements and models of the VGF as a function of view angle supports the idea that VGF can be characterized as a function of forest properties. A simple geometric optical (GO) model that includes only between-crown gaps can capture the basic shape of the VGF as a function of view zenith angle. However, the GO model tends to underestimate the VGF compared with estimates derived from hemispherical photos, particularly at high view angles. The use of a more complicated geometric optical–radiative transfer (GORT) model generally improves estimates of the VGF by taking into account within-crown gaps. Small footprint airborne lidar data are useful for mapping forest cover and height, which makes the parameterization of the GORT model possible over a landscape. Better knowledge of the angular distribution of gaps in forest canopies holds promise for improving remote sensing of snow cover fraction.
Abstract
Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.
Abstract
Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.