Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Rajesh R. Shrestha x
  • All content x
Clear All Modify Search
Rajesh R. Shrestha, Markus A. Schnorbus, and Alex J. Cannon

Abstract

Recent improvements in forecast skill of the climate system by dynamical climate models could lead to improvements in seasonal streamflow predictions. This study evaluates the hydrologic prediction skill of a dynamical climate model–driven hydrologic prediction system (CM-HPS), based on an ensemble of statistically downscaled outputs from the Canadian Seasonal to Interannual Prediction System (CanSIPS). For comparison, historical and future climate traces–driven ensemble streamflow prediction (ESP) was employed. The Variable Infiltration Capacity model (VIC) hydrologic model setup for the Fraser River basin, British Columbia, Canada, was used as a test bed for the two systems. In both cases, results revealed limited precipitation prediction skill. For streamflow prediction, the ESP approach has very limited or no correlation skill beyond the months influenced by initial hydrologic conditions, while the CM-HPS has moderately better correlation skill, attributable to the enhanced temperature prediction skill that results from CanSIPS’s ability to predict El Niño–Southern Oscillation (ENSO) and its teleconnections. The root-mean-square error, bias, and categorical skills for the two methods are mostly similar. Hydrologic modeling uncertainty also affects the prediction skill, and in some cases prediction skill is constrained by hydrologic model skill. Overall, the CM-HPS shows potential for seasonal streamflow prediction, and further enhancements in climate models could potentially to lead to more skillful hydrologic predictions.

Full access
Rajesh R. Shrestha, Alex J. Cannon, Markus A. Schnorbus, and Hunter Alford

Abstract

We describe a state-of-the-art framework for projecting hydrologic impacts due to enhanced warming and amplified moisture fluxes in the subarctic environment under anthropogenic climate change. We projected future hydrologic changes based on phase 5 of the Coupled Model Intercomparison Project global climate model simulations using the Variable Infiltration Capacity hydrologic model and a multivariate bias correction/downscaling method for the Liard basin in subarctic northwestern Canada. Subsequently, the variable importance of key climatic controls on a set of hydrologic indicators was analyzed using the random forests statistical model. Results indicate that enhanced warming and wetness by the end of century would lead to pronounced declines in annual and monthly snow water equivalent (SWE) and earlier maximum SWE. Prominent changes in the streamflow regime include increased annual mean and minimum flows, earlier maximum flows, and either increased or decreased maximum flows depending on interactions between temperature, precipitation, and snow. Using the variable importance analysis, we find that precipitation exerts the primary control on maximum SWE and annual mean and maximum flows, and temperature has the main influence on timings of maximum SWE and flow, and minimum flow. Given these climatic controls, the changes in the hydrologic indicators become progressively larger under the scenarios of 1.5°, 2.0°, and 3.0°C global mean temperature increases above the preindustrial period. Hence, the framework presented in this study provides a detailed diagnosis of the hydrologic changes as well as controls and interactions of the climatic variables, which could be generalized for understanding regional scale changes in subarctic/nival basins.

Open access
Rajesh R. Shrestha, Markus A. Schnorbus, Arelia T. Werner, and Francis W. Zwiers

Abstract

This study analyzed potential hydroclimatic change in the Peace River basin in the province of British Columbia, Canada, based on two structurally different approaches: (i) statistically downscaled global climate models (GCMs) using the bias-corrected spatial disaggregation (BCSD) and (ii) dynamically downscaled GCM with the Canadian Regional Climate Model (CRCM). Additionally, simulated hydrologic changes from the GCM–BCSD-driven Variable Infiltration Capacity (VIC) model were compared to the CRCM integrated Canadian Land Surface Scheme (CLASS) output. The results show good agreements of the GCM–BCSD–VIC simulated precipitation, temperature, and runoff with observations, while the CRCM-simulated results differ substantially from observations. Nevertheless, differences (between the 2050s and 1970s) obtained from the two approaches are qualitatively similar for precipitation and temperature, although they are substantially different for snow water equivalent and runoff. The results obtained from the five Coupled Global Climate Model, version 3, (CGCM3)-driven CRCM runs are similar, suggesting that the multidecadal internal variability is not a large source of uncertainty for the Peace River basin. Overall, the GCM–BCSD–VIC approach, for now, remains the preferred approach for projecting basin-scale future hydrologic changes, provided that it explicitly accounts for the biases and includes plausible snow and runoff parameterizations. However, even with the GCM–BCSD–VIC approach, projections differ considerably depending on which of an ensemble of eight GCMs is used. Such differences reemphasize the uncertain nature of future hydroclimatic projections.

Full access
Jefferson S. Wong, Xuebin Zhang, Shervan Gharari, Rajesh R. Shrestha, Howard S. Wheater, and James S. Famiglietti

Abstract

Obtaining reliable water balance estimates remains a major challenge in Canada for large regions with scarce in situ measurements. Various remote sensing products can be used to complement observation-based datasets and provide an estimate of the water balance at river basin or regional scales. This study provides an assessment of the water balance using combinations of various remote sensing– and data assimilation–based products and quantifies the nonclosure errors for river basins across Canada, ranging from 90 900 to 1 679 100 km2, for the period from 2002 to 2015. A water balance equation combines the following to estimate the monthly water balance closure: multiple sources of data for each water budget component, including two precipitation products—the global product WATCH Forcing Data ERA-Interim (WFDEI), and the Canadian Precipitation Analysis (CaPA); two evapotranspiration products—MODIS, and Global Land surface Evaporation: The Amsterdam Methodology (GLEAM); one source of water storage data—GRACE from three different centers; and observed discharge data from hydrometric stations (HYDAT). The nonclosure error is attributed to the different data products using a constrained Kalman filter. Results show that the combination of CaPA, GLEAM, and the JPL mascon GRACE product tended to outperform other combinations across Canadian river basins. Overall, the error attributions of precipitation, evapotranspiration, water storage change, and runoff were 36.7%, 33.2%, 17.8%, and 12.2%, which corresponded to 8.1, 7.9, 4.2, and 1.4 mm month−1, respectively. In particular, the nonclosure error from precipitation dominated in Western Canada, whereas that from evapotranspiration contributed most in the Mackenzie River basin.

Open access