Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Ralf Döscher x
  • Refine by Access: All Content x
Clear All Modify Search
Ralf Döscher and René Redler

Abstract

The relative importance of the formation of different North Atlantic Deep Water masses on the meridional overturning is examined with a non-eddy-resolving version of the CME model. In contrast to a frequently held belief, convective deep-water formation south of the North Atlantic sill does not significantly force the large-scale overturning if an adequate overflow across the sill can be represented by the model. The sensitivity of the meridional transport to the surface thermohaline forcing is increased under alternate climatic conditions such as increased surface cooling or reduced overflow compared to the present-day situation. The results indicate that climate models may be too sensitive to decadal timescale variability of the surface forcing in subpolar regions.

Full access
Ralf Döscher, Claus W. Böning, and Peter Herrmann

Abstract

To avoid an explicit simulation of the overflows across the Greenland-Scotland ridge, many models of the large-scale ocean circulation seek to include the net effect of the inflowing dense water masses by restoring temperature and salinity near the ridge to observed conditions. In this paper the authors examine the effect of different datasets for the northern restoring condition in two versions, eddy resolving and non-eddy resolving, of the model of the North and equatorial Atlantic that has been developed in recent years as a Community Modeling Effort for WOCE. It is shown that the use of smoothed climatological fields of temperature and salinity south of the Denmark Strait leads to strong deficiencies in the simulation of the deep flow field in the basin. A switch to actual hydrographic data from the Denmark Strait ignites a rapid dynamic response throughout the North Atlantic, affecting the transport and vertical structure of the deep western boundary current and, by virtue of the JEBAR efffect, the transport of the horizontal gyres. Meridional overturning and northward heat transport too weak in the cases with climatological boundary conditions, increase to more realistic levels in the subtropical North Atlantic.

The initial response to switches in the high-latitude thermohaline forcing is mediated by fast waves along the westurn boundary, leading to changes in the deep western boundary current in low latitudes after about two years in the non-eddy-resolving cast. The initial timescale depends on the horizontal grid spacing of the model; in the high-resolution case, the first signal reaches the equator in a few months. The adjustment to a new, dynamic quasi equilibrium involves Kelvin waves along the equator and Rossby wave in the interior and is attained in less than two decades throughout the North Atlantic. It is suggested that these fast dynamic adjustment processes could play an important role in possible fluctuations of the thermohaline circulation, or transitions between different equilibrium states of the coupled ocean–atmosphere system, and may have determined the timescale of the observed climatic transitions before and during the last deglaciation.

Full access
Andrew Roberts, Jessica Cherry, Ralf Döscher, Scott Elliott, and Laxmi Sushama

Abstract

No Abstract available.

Full access
Claus W. Böning, Ralf Döscher, and Hans-Jörg Isemer

Abstract

The monthly mean wind stress climatology of Hellerman and Rosenstein (HR) is compared with the climatology of Isemer and Hasse (IH), which represents a version of the Bunker atlas (BU) for the North Atlantic based on revised parameterizations. The drag coefficients adopted by IH are 21% smaller than the values of BU and HR, and the calculation of wind speed from marine estimates of Beaufort force (Bft) is based on a revised Beaufort equivalent scale similar to the scientific scale recommended by WMO. The latter choice significantly increases wind speed below Bft 8, and effectively counteracts the reduction of the drag coefficients.

Comparing the IH stresses with HR reveals substantially enhanced magnitudes in the trade wind region throughout the year. At 15°N the mean easterly stress increases from about 0.9 (HR) to about 1.2 dyn cm−1 (IH). Annual mean differences are smaller in the region of the westerlies. In winter, the effect due to the reduced drag coefficient dominates and leads to smaller stress values in IH; during summer season the revision of the Beaufort equivalents is more effective and leads to increased stresses.

Implications of the different wind stress climatologies for forcing the large-scale ocean circulation are discussed by means of the Sverdrup transport streamfunction (ψs): Throughout the subtropical gyre a significant intensification of ψs takes place with IH. At 27°N, differences of more than 10 Sv (1 Sv ≡ 106 m3 s−1) are found near the western boundary. Differences in the seasonality of ψs are more pronounced in near-equatorial regions where IH increase the amplitude of the annual cycle by about 50%. An eddy-resolving model of the North Atlantic circulation is used to examine the effect of the different wind stresses on the seasonal cycle of the Florida Current. The transport predicted by the numerical model is in much better agreement with observations when the circulation is forced by IH than by HR, regarding both the annual mean (29.1 Sv vs 23.2 Sv) and the seasonal range (6.3 Sv vs 3.4 Sv).

Full access
Claus W. Böning, Ralf Döscher, and Reinhard G. Budich

Abstract

A high-resolution model of the wind-driven and thermohaline circulation in the North and equatorial Atlantic Ocean is used to study the structure and variability of the boundary current system at 26°N, including the Florida Current, the Antilles Current, and the Deep Western Boundary Current (DWBC). The model was developed by Bryan and Holland as a Community Modeling Effort of the World Ocean Circulation Experiment. Subsequent experiments have been performed at IfM Kiel, with different friction coefficients, and different climatologies of monthly mean wind stress: Hellerman–Rosenstein (HR) and Isemer–Hasse (IH). The southward volume transports in the upper 1000 m of the interior Atlantic, at 26°N, are 25.0 Sv (Sv ≡ 106m3s−1) for HR, and 34.9 Sv for IH forcing, in good agreement with the transport from the integrated Sverdrup balance at this latitude (23.9 Sv for HR, 35.6 Sv for IH). The return flow of this wind-driven transport, plus the southward transport of the DWBC (6–8 Sv), is partitioned between the Florida Current and Antilles Current. With HR forcing, the transport through the Straits of Florida is 23.2 Sv; this increases to 29.1 Sv when the wind stresses of IH are used. The annual variation of the simulated Florida Current is very similar to previous, coarse-resolution models when using the same wind-stress climatology (HR); the annual range (3.4 Sv) obtained with HR forcing is strongly enhanced (6.3 Sv) with IH forcing. The meridional heat transport at 26°N, zonally integrated across the basin, is in phase with the Florida Current; its annual range increases from 0.44 PW (HR) to 0.80 PW (IH). The annual signal east of the Bahamas is masked by strong transport fluctuations on a time scale of O(100 days), caused by an instability of the Antilles Current. By averaging over several model years, an annual cycle is extracted, which is in phase with the wind stress curl over the western part of the basin.

Full access
Claus W. Böning, Frank O. Bryan, William R. Holland, and Ralf Döscher

Abstract

The authors use different versions of the model of the wind- and thermohaline-driven circulation in the North and Equatorial Atlantic developed under the WOCE Community Modeling Effort to investigate the mean flow pattern and deep-water formation in the subpolar region, and the corresponding structure of the basin-scale meridional overturning circulation transport. A suite of model experiments has been carded out in recent years, differing in horizontal resolution (1° × 1.2°, 1/3° × 0.4°, 1/6° × 0.2°), thermohaline boundary conditions, and parameterization of small-scale mixing. The mass transport in the subpolar gyre and the production of North Atlantic Deep Water (NADW) appears to be essentially controlled by the outflow of dense water from the Greenland and Norwegian Seas. in the present model simulated by restoring conditions in a buffer zone adjacent to the boundary near the Greenland–Scotland Ridge. Deep winter convection homogenizes the water column in the center of the Labrador Sea to about 2000 m. The water mass properties (potential temperature about 3°C, salinity about 34.9 psu) and the volume (1.1×1053 km3) of the homogenized water are in fair agreement with observations. The convective mixing has only little effect on the net sinking of upper-layer water in the subpolar gyre. Sensitivity experiments show that the export of NADW from the subpolar North Atlantic is more strongly affected by changes in the overflow conditions than by changes in the surface buoyancy fluxes over the Labrador and Irminger Seas, even if these suppress the deep convection completely. The host of sensitivity experiments demonstrates that realistic meridional overturning and heat transport distributions for the North Atlantic (with a maximum of 1 PW) can be obtained with NADW production rates of 15–16 Sv, provided the spurious upwelling of deep water that characterizes many model solutions in the Gulf Stream regime is avoided by adequate horizontal resolution add mixing parameterization.

Full access