Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Randall J. Alliss x
- Refine by Access: All Content x
Abstract
Saturation pressure differences, a measure of parcel saturation, are calculated from upper-air soundings and compared to manual surface observations of cloudiness. The saturation pressure level p * (more commonly referred to as the lifted condensation level, LCL), can be calculated for each level in a sounding using the temperature and dewpoint temperatures. Thus, p * of an unsaturated air parcel is found by dry-adiabatic ascent to the pressure level where the parcel is just saturated. The difference between air parcel pressure and saturation pressure level defines the parcel saturation pressure difference. The mean saturation pressure difference between 1000 and 700, 700 and 400, and 400 and 300 mb is calculated and compared to the observed composite cloudiness for those layers. Results indicate that as the absolute value of saturation pressure difference decreases toward zero, the resulting ground observed composite cloud amount increases. However, the mean saturation pressure difference for high clouds ranges from 64 mb under clear skies to 16 mb for overcast conditions. This corresponds to relative humidities between 25% and 76%. Most previous studies do not indicate such large cloud amounts at these humidities. Three empirical relationships that define low, middle, and high clouds are developed based on one year of comparisons. These relationships are then tested on an independent dataset that include a wide variety of cloud cover conditions. Qualitative comparisons are made to manual observations of cloudiness and indicate that the relationships overall slightly overestimate the frequency of cloudiness. Cloudiness derived from the Visible-Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) onboard the Geostationary Environmental Operational Satellite (GOES) 7 using the CO2 slicing technique is also compared to surface observations. Results indicate that the satellite-derived cloudiness overestimates cloudiness compared with surface observations but is also very similar to the saturation pressure difference estimates.
Abstract
Saturation pressure differences, a measure of parcel saturation, are calculated from upper-air soundings and compared to manual surface observations of cloudiness. The saturation pressure level p * (more commonly referred to as the lifted condensation level, LCL), can be calculated for each level in a sounding using the temperature and dewpoint temperatures. Thus, p * of an unsaturated air parcel is found by dry-adiabatic ascent to the pressure level where the parcel is just saturated. The difference between air parcel pressure and saturation pressure level defines the parcel saturation pressure difference. The mean saturation pressure difference between 1000 and 700, 700 and 400, and 400 and 300 mb is calculated and compared to the observed composite cloudiness for those layers. Results indicate that as the absolute value of saturation pressure difference decreases toward zero, the resulting ground observed composite cloud amount increases. However, the mean saturation pressure difference for high clouds ranges from 64 mb under clear skies to 16 mb for overcast conditions. This corresponds to relative humidities between 25% and 76%. Most previous studies do not indicate such large cloud amounts at these humidities. Three empirical relationships that define low, middle, and high clouds are developed based on one year of comparisons. These relationships are then tested on an independent dataset that include a wide variety of cloud cover conditions. Qualitative comparisons are made to manual observations of cloudiness and indicate that the relationships overall slightly overestimate the frequency of cloudiness. Cloudiness derived from the Visible-Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) onboard the Geostationary Environmental Operational Satellite (GOES) 7 using the CO2 slicing technique is also compared to surface observations. Results indicate that the satellite-derived cloudiness overestimates cloudiness compared with surface observations but is also very similar to the saturation pressure difference estimates.
Abstract
Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (VisibleInfrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.
Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the saturation pressure difference. Furthermore, cloud fractions observed in this study are considerably higher than those reported in similar studies and by other cloud fraction formulations.
Abstract
Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (VisibleInfrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.
Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the saturation pressure difference. Furthermore, cloud fractions observed in this study are considerably higher than those reported in similar studies and by other cloud fraction formulations.
Abstract
Fields of cloudiness derived from the Geostationary Operational Environmental Satellite VISSR (VisibleInfrared Spin Scan Radiometer) Atmospheric Sounder are analyzed over the Gulf Stream locale (GSL) to investigate seasonal and geographical variations. The GSL in this study is defined as the region bounded from 31° to 38°N and 82° to 66°W. This region covers an area that includes the United States mid-Atlantic coast states, the Gulf Stream, and portions of the Sargasso Sea. Clouds over the GSL are found approximately three-quarters of the time between 1985 and 1993. However, large seasonal variations in the frequency of cloudiness exist. These seasonal variations show a distinct relationship to gradients in sea surface temperature (SST). For example, during winter when large SST gradients are present, large gradients in cloudiness are found. Clouds are observed least often during summer over the ocean portion of the GSL. This minimum coincides with an increase in atmospheric stability due to large-scale subsidence. Cloudiness is also found over the GSL in response to mesoscale convergence areas induced by sea surface temperature gradients. Geographical variations in cloudiness are found to be related to the meteorology of the region. During periods of cold-air advection, which are found most frequently in winter, clouds are found less often between the coastline and the core of the Gulf Stream and more often over the Sargasso Sea. During cyclogenesis, large cloud shields often develop and cover the entire domain.
Satellite estimates of cloudiness are found to be least reliable over land at night during the cold months. In these situations, the cloud retrieval algorithm often mistakes clear sky for low clouds. Satellite-derived cloudiness over land is compared with daytime surface observations of cloudiness. Results indicate that retrieved cloudiness agrees well with surface observations. Relative humidity fields taken from global analyses are compared with satellite cloud heights at three levels in the atmosphere. Cloudiness observed at these levels is found at relative humidities in the 75%100% range but is also observed at humidities as low as 26%.
Abstract
Fields of cloudiness derived from the Geostationary Operational Environmental Satellite VISSR (VisibleInfrared Spin Scan Radiometer) Atmospheric Sounder are analyzed over the Gulf Stream locale (GSL) to investigate seasonal and geographical variations. The GSL in this study is defined as the region bounded from 31° to 38°N and 82° to 66°W. This region covers an area that includes the United States mid-Atlantic coast states, the Gulf Stream, and portions of the Sargasso Sea. Clouds over the GSL are found approximately three-quarters of the time between 1985 and 1993. However, large seasonal variations in the frequency of cloudiness exist. These seasonal variations show a distinct relationship to gradients in sea surface temperature (SST). For example, during winter when large SST gradients are present, large gradients in cloudiness are found. Clouds are observed least often during summer over the ocean portion of the GSL. This minimum coincides with an increase in atmospheric stability due to large-scale subsidence. Cloudiness is also found over the GSL in response to mesoscale convergence areas induced by sea surface temperature gradients. Geographical variations in cloudiness are found to be related to the meteorology of the region. During periods of cold-air advection, which are found most frequently in winter, clouds are found less often between the coastline and the core of the Gulf Stream and more often over the Sargasso Sea. During cyclogenesis, large cloud shields often develop and cover the entire domain.
Satellite estimates of cloudiness are found to be least reliable over land at night during the cold months. In these situations, the cloud retrieval algorithm often mistakes clear sky for low clouds. Satellite-derived cloudiness over land is compared with daytime surface observations of cloudiness. Results indicate that retrieved cloudiness agrees well with surface observations. Relative humidity fields taken from global analyses are compared with satellite cloud heights at three levels in the atmosphere. Cloudiness observed at these levels is found at relative humidities in the 75%100% range but is also observed at humidities as low as 26%.
Abstract
This paper documents evidence of a diurnal variability in cloudiness over the Gulf Stream locale. The Gulf Stream locale (GSL) is defined as the region covering 31°38°N, 82°71°W. The Gulf Stream, which occupies a portion of the GSL, is a warm current of water that flows south to north along the east coast of the United States and provides conditions conducive for the development of cloudiness. Cloud heights derived from the GOES VISSR (Visible-infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are obtained and used to produce a 7-yr climatology of the diurnal variation in the frequency of low-, middle-,and high-level cloudiness. The climatology is segregated into summer and winter seasons.
Diurnal variations are found during the summer and winter. Satellite observations over land indicate a maximum in the frequency of low cloudiness during daytime and a minimum at night. In addition, high cloudiness is found to increase significantly late in the afternoon and evening. Over the Gulf Stream region, high cloudiness is found most frequently in the mid- to late morning hours. A midafternoon maximum in low cloudiness is found along the coastline of Georgia and South Carolina and north of the Gulf Stream east of Virginia. Nocturnal minimums in low cloudiness are reported in these regions. Results suggest that summertime low and high cloudiness over the GSL are related to prevalent convective activity. An analysis of the diurnally oscillating pattern of boundary layer convergence, derived from analyses from the National Meteorological Center's step coordinate model, indicates a strong relationship to the presence of high cloudiness. The strong correspondence between the timing of these two parameters suggests that atmosphere dynamics play a significant role in the diurnal cycle in high cloudiness.
In winter, when convective activity is suppressed there is less detectable response of the atmosphere to the 24-h solar cycle manifest in the diurnal variations of clouds. Nevertheless low- and midlevel cloudiness are found most frequently in the predawn hours, except over the Gulf Stream where low clouds exhibit an afternoon maximum and a nocturnal minimum. Surface observations of cloudiness support the diurnal variations reported by VAS.
Abstract
This paper documents evidence of a diurnal variability in cloudiness over the Gulf Stream locale. The Gulf Stream locale (GSL) is defined as the region covering 31°38°N, 82°71°W. The Gulf Stream, which occupies a portion of the GSL, is a warm current of water that flows south to north along the east coast of the United States and provides conditions conducive for the development of cloudiness. Cloud heights derived from the GOES VISSR (Visible-infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are obtained and used to produce a 7-yr climatology of the diurnal variation in the frequency of low-, middle-,and high-level cloudiness. The climatology is segregated into summer and winter seasons.
Diurnal variations are found during the summer and winter. Satellite observations over land indicate a maximum in the frequency of low cloudiness during daytime and a minimum at night. In addition, high cloudiness is found to increase significantly late in the afternoon and evening. Over the Gulf Stream region, high cloudiness is found most frequently in the mid- to late morning hours. A midafternoon maximum in low cloudiness is found along the coastline of Georgia and South Carolina and north of the Gulf Stream east of Virginia. Nocturnal minimums in low cloudiness are reported in these regions. Results suggest that summertime low and high cloudiness over the GSL are related to prevalent convective activity. An analysis of the diurnally oscillating pattern of boundary layer convergence, derived from analyses from the National Meteorological Center's step coordinate model, indicates a strong relationship to the presence of high cloudiness. The strong correspondence between the timing of these two parameters suggests that atmosphere dynamics play a significant role in the diurnal cycle in high cloudiness.
In winter, when convective activity is suppressed there is less detectable response of the atmosphere to the 24-h solar cycle manifest in the diurnal variations of clouds. Nevertheless low- and midlevel cloudiness are found most frequently in the predawn hours, except over the Gulf Stream where low clouds exhibit an afternoon maximum and a nocturnal minimum. Surface observations of cloudiness support the diurnal variations reported by VAS.
Abstract
Data from the Special Sensor Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) spacecraft have been used to study the precipitation patterns associated with Hurricane Hugo (1989). Results indicate the intensification of Hugo was associated with increases in SSM/I-derived total latent heat release and increases in heavier rainfall rates near the storm center. This study also shows that SSM/I rainfall rates prior to the landfall of Hugo at Charleston, South Carolina, compared favorably with raingage observations. Additionally, data from the 85-GHz channel was used to monitor the extent of convection near the storm's center. As Hugo intensified, the areal coverage of deep convection increased. Furthermore, the 85-GHz brightness-temperature imagery was useful in determining the location of Hugo's low-level center. These results indicate the potential of using SSM/I data in the analysis and prediction of tropical cyclones in an operational environment.
Abstract
Data from the Special Sensor Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) spacecraft have been used to study the precipitation patterns associated with Hurricane Hugo (1989). Results indicate the intensification of Hugo was associated with increases in SSM/I-derived total latent heat release and increases in heavier rainfall rates near the storm center. This study also shows that SSM/I rainfall rates prior to the landfall of Hugo at Charleston, South Carolina, compared favorably with raingage observations. Additionally, data from the 85-GHz channel was used to monitor the extent of convection near the storm's center. As Hugo intensified, the areal coverage of deep convection increased. Furthermore, the 85-GHz brightness-temperature imagery was useful in determining the location of Hugo's low-level center. These results indicate the potential of using SSM/I data in the analysis and prediction of tropical cyclones in an operational environment.
Abstract
Data from the Special Sensor Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program satellite are used to study the precipitation patterns and wind fields associated with Hurricane Florence (1988). SSM/I estimates indicate that the intensification of Florence was coincident with the increase in total latent beat release. Additionally, an increase in the concentration and areal coverage of heavier rain rates near the center is observed. SSM/I marine surface winds of Florence are examined and compared to in situ data, and to an enhanced objective isotach analysis over the Gulf of Mexico. Results indicate that the SSM/I winds are weaker than those depicted in the enhanced objective analysis and slightly stronger than in situ observations. Finally, center positions of Florence are estimated using the 85-GHz brightness temperature imagery. Much improved estimates are achieved using this imagery compared to using GOES infrared imagery. These results concur with previous studies that applications of SSM/I data could be valuable in augmenting current methods of tropical cyclone analysis.
Abstract
Data from the Special Sensor Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program satellite are used to study the precipitation patterns and wind fields associated with Hurricane Florence (1988). SSM/I estimates indicate that the intensification of Florence was coincident with the increase in total latent beat release. Additionally, an increase in the concentration and areal coverage of heavier rain rates near the center is observed. SSM/I marine surface winds of Florence are examined and compared to in situ data, and to an enhanced objective isotach analysis over the Gulf of Mexico. Results indicate that the SSM/I winds are weaker than those depicted in the enhanced objective analysis and slightly stronger than in situ observations. Finally, center positions of Florence are estimated using the 85-GHz brightness temperature imagery. Much improved estimates are achieved using this imagery compared to using GOES infrared imagery. These results concur with previous studies that applications of SSM/I data could be valuable in augmenting current methods of tropical cyclone analysis.
Abstract
Fields of rainfall rates, integrated water vapor (IWV), and marine surface wind speeds retrieved by the Special Sensor Microwave/Imager (SSM/I) during the intensive observational period 4 on 4 January 1989 of the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) were analyzed. Subjectively analyzed and model-simulated frontal structures were used to examine the spatial relationship of the SSM/I observed fields to the rapidly intensifying storm and the associated fronts. Qualitative and quantitative comparisons of SSM/I retrievals with GOES imagery, conventional observations, and results produced from the Naval Research Laboratory's (NRL) limited-area numerical model were also made.
SSM/I rainfall was found along the cold and warm fronts, with heavy precipitation within frontal bands. The spatial pattern and characteristics of SSM/I precipitation closely resembled those simulated by the model. Both the warm and the cold front were found to be located near the area of the strongest gradient in IWV. In the warm sector, areas of IWV greater than 40 mm were found, an amount supported by model simulations. Both SSM/I rain rate and IWV distribution were found to be useful in locating the cold and warm fronts. There was good agreement on the relationship of frontal locations to the precipitation patterns and IWV gradients. Most of the high-wind area near the storm center was obscured by clouds for marine surface wind retrieval. SSM/I-retrieved marine surface winds outside the cloud shield (flag 0) were compared to ship- and buoy-reported winds. It was found that the retrieved wind estimates were within 0–3 m s−1 of in situ observation over areas of slow wind shifts. The errors became larger in regions of rapid wind shifts.
Abstract
Fields of rainfall rates, integrated water vapor (IWV), and marine surface wind speeds retrieved by the Special Sensor Microwave/Imager (SSM/I) during the intensive observational period 4 on 4 January 1989 of the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) were analyzed. Subjectively analyzed and model-simulated frontal structures were used to examine the spatial relationship of the SSM/I observed fields to the rapidly intensifying storm and the associated fronts. Qualitative and quantitative comparisons of SSM/I retrievals with GOES imagery, conventional observations, and results produced from the Naval Research Laboratory's (NRL) limited-area numerical model were also made.
SSM/I rainfall was found along the cold and warm fronts, with heavy precipitation within frontal bands. The spatial pattern and characteristics of SSM/I precipitation closely resembled those simulated by the model. Both the warm and the cold front were found to be located near the area of the strongest gradient in IWV. In the warm sector, areas of IWV greater than 40 mm were found, an amount supported by model simulations. Both SSM/I rain rate and IWV distribution were found to be useful in locating the cold and warm fronts. There was good agreement on the relationship of frontal locations to the precipitation patterns and IWV gradients. Most of the high-wind area near the storm center was obscured by clouds for marine surface wind retrieval. SSM/I-retrieved marine surface winds outside the cloud shield (flag 0) were compared to ship- and buoy-reported winds. It was found that the retrieved wind estimates were within 0–3 m s−1 of in situ observation over areas of slow wind shifts. The errors became larger in regions of rapid wind shifts.