Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ravan Ahmadov x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas Jones
,
Ravan Ahmadov
,
Eric James
,
Gabriel Pereira
,
Saulo Freitas
, and
Georg Grell

Abstract

This research begins the process of creating an ensemble-based forecast system for smoke aerosols generated from wildfires using a modified version of the National Severe Storms Laboratory (NSSL) Warn-on-Forecast System (WoFS). The existing WoFS has proven effective in generating short-term (0–3 h) probabilistic forecasts of high-impact weather events such as storm rotation, hail, severe winds, and heavy rainfall. However, it does not include any information on large smoke plumes generated from wildfires that impact air quality and the surrounding environment. The prototype WoFS-Smoke system is based on the deterministic High-Resolution Rapid Refresh-Smoke (HRRR-Smoke) model. HRRR-Smoke runs over a continental United States (CONUS) domain with a 3-km horizontal grid spacing, with hourly forecasts out to 48 h. The smoke plume injection algorithm in HRRR-Smoke is integrated into the WoFS forming WOFS-Smoke so that the advantages of the rapidly cycling, ensemble-based WoFS can be used to generate short-term (0–3 h) probabilistic forecasts of smoke. WoFS-Smoke forecasts from three wildfire cases during 2020 show that the system generates a realistic representation of wildfire smoke when compared against satellite observations. Comparison of smoke forecasts with radar data show that forecast smoke reaches higher levels than radar-detected debris, but exceptions to this are noted. The radiative effect of smoke on surface temperature forecasts is evident, which reduces forecast errors compared to experiments that do not include smoke.

Restricted access
Fotini Katopodes Chow
,
Katelyn A. Yu
,
Alexander Young
,
Eric James
,
Georg A. Grell
,
Ivan Csiszar
,
Marina Tsidulko
,
Saulo Freitas
,
Gabriel Pereira
,
Louis Giglio
,
Mariel D. Friberg
, and
Ravan Ahmadov

Abstract

Smoke from the 2018 Camp Fire in Northern California blanketed a large part of the region for 2 weeks, creating poor air quality in the “unhealthy” range for millions of people. The NOAA Global System Laboratory’s HRRR-Smoke model was operating experimentally in real time during the Camp Fire. Here, output from the HRRR-Smoke model is compared to surface observations of PM2.5 from AQS and PurpleAir sensors as well as satellite observation data. The HRRR-Smoke model at 3-km resolution successfully simulated the evolution of the plume during the initial phase of the fire (8–10 November 2018). Stereoscopic satellite plume height retrievals were used to compare with model output (for the first time, to the authors’ knowledge), showing that HRRR-Smoke is able to represent the complex 3D distribution of the smoke plume over complex terrain. On 15–16 November, HRRR-Smoke was able to capture the intensification of PM2.5 pollution due to a high pressure system and subsidence that trapped smoke close to the surface; however, HRRR-Smoke later underpredicted PM2.5 levels due to likely underestimates of the fire radiative power (FRP) derived from satellite observations. The intensity of the Camp Fire smoke event and the resulting pollution during the stagnation episodes make it an excellent test case for HRRR-Smoke in predicting PM2.5 levels, which were so high from this single fire event that the usual anthropogenic pollution sources became insignificant. The HRRR-Smoke model was implemented operationally at NOAA/NCEP in December 2020, now providing essential support for smoke forecasting as the impact of U.S. wildfires continues to increase in scope and magnitude.

Full access
Changhyoun Park
,
Christoph Gerbig
,
Sally Newman
,
Ravan Ahmadov
,
Sha Feng
,
Kevin R. Gurney
,
Gregory R Carmichael
,
Soon-Young Park
,
Hwa-Woon Lee
,
Mike Goulden
,
Jochen Stutz
,
Jeff Peischl
, and
Tom Ryerson

Abstract

To study regional-scale carbon dioxide (CO2) transport, temporal variability, and budget over the Southern California Air Basin (SoCAB) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign period, a model that couples the Weather Research and Forecasting (WRF) Model with the Vegetation Photosynthesis and Respiration Model (VPRM) has been used. Our numerical simulations use anthropogenic CO2 emissions of the Hestia Project 2010 fossil-fuel CO2 emissions data products along with optimized VPRM parameters at “FLUXNET” sites, for biospheric CO2 fluxes over SoCAB. The simulated meteorological conditions have been validated with ground and aircraft observations, as well as with background CO2 concentrations from the coastal Palos Verdes site. The model captures the temporal pattern of CO2 concentrations at the ground site at the California Institute of Technology in Pasadena, but it overestimates the magnitude in early daytime. Analysis of CO2 by wind directions reveals the overestimate is due to advection from the south and southwest, where downtown Los Angeles is located. The model also captures the vertical profile of CO2 concentrations along with the flight tracks. The optimized VPRM parameters have significantly improved simulated net ecosystem exchange at each vegetation-class site and thus the regional CO2 budget. The total biospheric contribution ranges approximately from −24% to −20% (daytime) of the total anthropogenic CO2 emissions during the study period.

Full access
David C. Dowell
,
Curtis R. Alexander
,
Eric P. James
,
Stephen S. Weygandt
,
Stanley G. Benjamin
,
Geoffrey S. Manikin
,
Benjamin T. Blake
,
John M. Brown
,
Joseph B. Olson
,
Ming Hu
,
Tatiana G. Smirnova
,
Terra Ladwig
,
Jaymes S. Kenyon
,
Ravan Ahmadov
,
David D. Turner
,
Jeffrey D. Duda
, and
Trevor I. Alcott

Abstract

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA/National Centers for Environmental Prediction (NCEP). Implemented operationally at NOAA/NCEP in 2014, the HRRR features 3-km horizontal grid spacing and frequent forecasts (hourly for CONUS and 3-hourly for Alaska). HRRR initialization is designed for optimal short-range forecast skill with a particular focus on the evolution of precipitating systems. Key components of the initialization are radar-reflectivity data assimilation, hybrid ensemble-variational assimilation of conventional weather observations, and a cloud analysis to initialize stratiform cloud layers. From this initial state, HRRR forecasts are produced out to 18 h every hour, and out to 48 h every 6 h, with boundary conditions provided by the Rapid Refresh system. Between 2014 and 2020, HRRR development was focused on reducing model bias errors and improving forecast realism and accuracy. Improved representation of the planetary boundary layer, subgrid-scale clouds, and land surface contributed extensively to overall HRRR improvements. The final version of the HRRR (HRRRv4), implemented in late 2020, also features hybrid data assimilation using flow-dependent covariances from a 3-km, 36-member ensemble (“HRRRDAS”) with explicit convective storms. HRRRv4 also includes prediction of wildfire smoke plumes. The HRRR provides a baseline capability for evaluating NOAA’s next-generation Rapid Refresh Forecast System, now under development.

Significance Statement

NOAA’s operational hourly updating, convection-allowing model, the High-Resolution Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in assimilation of weather observations, as well as in physics parameterizations, have led to improvements in simulated radar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.

Open access
Jordan G. Powers
,
Joseph B. Klemp
,
William C. Skamarock
,
Christopher A. Davis
,
Jimy Dudhia
,
David O. Gill
,
Janice L. Coen
,
David J. Gochis
,
Ravan Ahmadov
,
Steven E. Peckham
,
Georg A. Grell
,
John Michalakes
,
Samuel Trahan
,
Stanley G. Benjamin
,
Curtis R. Alexander
,
Geoffrey J. Dimego
,
Wei Wang
,
Craig S. Schwartz
,
Glen S. Romine
,
Zhiquan Liu
,
Chris Snyder
,
Fei Chen
,
Michael J. Barlage
,
Wei Yu
, and
Michael G. Duda

Abstract

Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.

Full access