Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Raymond G. Najjar x
  • All content x
Clear All Modify Search
Jon M. Nese, Raymond G. Najjar, and Joseph G. Murgo
Full access
Liang Ning, Michael E. Mann, Robert Crane, Thorsten Wagener, Raymond G. Najjar Jr., and Riddhi Singh


This study uses an empirical downscaling method based on self-organizing maps (SOMs) to produce high-resolution, downscaled precipitation projections over the state of Pennsylvania in the mid-Atlantic region of the United States for the future period 2046–65. To examine the sensitivity of precipitation change to the water vapor increase brought by global warming, the authors test the following two approaches to downscaling: one uses the specific humidity in the downscaling algorithm and the other does not. Application of the downscaling procedure to the general circulation model (GCM) projections reveals changes in the relative occupancy, but not the fundamental nature, of the simulated synoptic circulation states. Both downscaling approaches predict increases in annual and winter precipitation, consistent in sign with the “raw” output from the GCMs but considerably smaller in magnitude. For summer precipitation, larger discrepancies are seen between raw and downscaled GCM projections, with a substantial dependence on the downscaling version used (downscaled precipitation changes employing specific humidity are smaller than those without it). Application of downscaling generally reduces the inter-GCM uncertainties, suggesting that some of the spread among models in the raw projected precipitation may result from differences in precipitation parameterization schemes rather than fundamentally different climate responses. Projected changes in the North Atlantic Oscillation (NAO) are found to be significantly related to changes in winter precipitation in the downscaled results, but not for the raw GCM results, suggesting that the downscaling more effectively captures the influence of climate dynamics on projected changes in winter precipitation.

Full access
Amanda M. Walker, David W. Titley, Michael E. Mann, Raymond G. Najjar, and Sonya K. Miller


Categorization of storm surge with the Saffir–Simpson hurricane scale has been a useful means of communicating potential impacts for decades. However, storm surge was removed from this scale following Hurricane Katrina (2005), leaving no scale-based method for storm surge risk communication despite its significant impacts on life and property. This study seeks to create a new, theoretical storm surge scale based on fiscal damage for effective risk analysis. Advanced Circulation model simulation output data of maximum water height and velocity were obtained for four storms: Hurricane Katrina, Hurricane Gustav, Hurricane Ike, and Superstorm Sandy. Four countywide fiscal loss methods were then considered. The first three use National Centers for Environmental Information Storm Events Database (SED) property damages and Bureau of Economic Analysis (BEA) population, per capita personal income, or total income. The fourth uses National Flood Insurance Program total insured coverage and paid claims. Initial correlations indicated the statistical mode of storm surge data above the 90th percentile was most skillful; this metric was therefore chosen to represent countywide storm surge. Multiple linear regression assessed the most skillful combination of storm surge variables (height and velocity) and fiscal loss method (SED property damages and BEA population, i.e., loss per capita), and defined the proposed scale, named the Kuykendall scale. Comparison with the four storms’ actual losses shows skillful performance, notably a 20% skill increase over surge height-only approaches. The Kuykendall scale demonstrates promise for skillful future storm surge risk assessment in the analytical, academic, and operational domains.

Open access