Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Renellys C. Perez x
  • All content x
Clear All Modify Search
Verena Hormann, Rick Lumpkin, and Renellys C. Perez

Abstract

A generalized method is developed to determine the position of the Atlantic northern cold tongue front across its zonal extent from satellite sea surface temperature (SST) data. Previous approaches estimated the frontal position subjectively or individually, calling for a more objective technique that is suitable for large datasets. The developed methodology is based on a median frontal SST, and associated positional uncertainties are on the order of 0.3° latitude for the period 1998–2011. Frontal characteristics are generally consistent with tropical instability waves (TIWs) and interannual variations are large. Application to drifter observations shows how the new methodology can be used to better understand circulation features near the northern cold tongue front. A drifter pair deployed on the eastern side of a passing TIW crest north of the front revealed that the trajectories of the drifters were clearly influenced by the shape of the front and they did not cross the front, but rather stayed close together about 2.5° north of the front. In a more complete analysis using all available drifters near the Atlantic northern cold tongue front, only about 12% of the trajectories crossed the front. Analyses in an along- and cross-frontal frame of reference complement isopycnal coordinate mapping, and tropical Atlantic drifter velocities averaged in frontal coordinates indicate a broadened shear zone between the northern branch of the South Equatorial Current and North Equatorial Countercurrent as well as meridional convergence near the front.

Full access
Renellys C. Perez and William S. Kessler

Abstract

The shallow tropical cells (TCs) in the central equatorial Pacific Ocean are characterized by strong equatorial upwelling, near-surface wind-driven poleward flow, downwelling near the cold tongue boundaries, and equatorward flow below the surface mixed layer. Meridional and vertical velocity fluctuations associated with tropical instability waves (TIWs) in the central equatorial Pacific are much larger than those associated with the TCs and can modify the background circulation. OGCM experiments are used to simulate the spinup of the cells along 140°W in response to perturbed trade winds during various phases of the annual cycle. Equatorially modified versions of geostrophy and Ekman theory, and zonal filtering, are used to isolate the large-zonal-scale wind-driven response. Weakening of the trade winds in any season rapidly weakens the TCs, decreases the zonal current shear, and reduces the amplitude and propagation speed of the TIWs. In boreal fall and winter, when the background TCs and TIWs are seasonally strong, the ocean response is equatorially asymmetric (stronger flows north of the equator) and there is evidence of rectification by the modified TIWs onto the TCs. The linear equatorially modified Ekman solutions largely explain the meridional structure and temporal evolution of the anomalous ageostrophic response in the TCs. In fall and winter, however, deviations from the modified Ekman solutions were attributed to interactions with the background TCs and TIWs. An observing system able to quantify the relative contributions of these two processes to the seasonally varying equatorial asymmetry of background circulation would require fine meridional and temporal sampling.

Full access
Rick Lumpkin, Luca Centurioni, and Renellys C. Perez

Abstract

The Global Ocean Observing System (GOOS) requirements for in situ surface temperature and velocity measurements call for observations at 5° × 5° resolution. A key component of the GOOS that measures these essential climate variables is the global array of surface drifters. In this study, statistical observing system sampling experiments are performed to evaluate how many drifters are required to achieve the GOOS requirements, both with and without the presence of a completed global tropical moored buoy array at 5°S–5°N. The statistics for these simulations are derived from the evolution of the actual global drifter array. It is concluded that drifters should be deployed within the near-equatorial band even though that band is also in principle covered by the tropical moored array, as the benefits of not doing so are marginal. It is also concluded that an optimal design half-life for the drifters is ~450 days, neglecting external sources of death, such as running aground or being picked up. Finally, it is concluded that comparing the drifter array size to the number of static 5° × 5° open-ocean bins is not an ideal performance indicator for system evaluation; a better performance indicator is the fraction of 5° × 5° open-ocean bins sampled, neglecting bins with high drifter death rates.

Full access
Allyson Rugg, Gregory R. Foltz, and Renellys C. Perez

Abstract

This study examines the causes of observed sea surface temperature (SST) anomalies in the tropical North Atlantic between 1982 and 2015. The emphasis is on the boreal winter and spring seasons, when tropical Atlantic SSTs project strongly onto the Atlantic meridional mode (AMM). Results from a composite analysis of satellite and reanalysis data show important forcing of SST anomalies by wind-driven changes in mixed layer depth and shortwave radiation between 5° and 10°N, in addition to the well-known positive wind–evaporation–SST and shortwave radiation–SST feedbacks between 5° and 20°N. Anomalous surface winds also drive pronounced thermocline depth anomalies of opposite signs in the eastern equatorial Atlantic and intertropical convergence zone (ITCZ; 2°–8°N). A major new finding is that there is strong event-to-event variability in the impact of thermocline depth on SST in the ITCZ region, in contrast to the more consistent relationship in the eastern equatorial Atlantic. Much stronger anomalies of meridional wind stress, thermocline depth, and vertical turbulent cooling are found in the ITCZ region during a negative AMM event in 2009 compared to a negative event in 2015 and a positive event in 2010, despite SST anomalies of similar magnitude in the early stages of each event. The larger anomalies in 2009 led to a much stronger and longer-lived event. Possible causes of the inconsistent relationship between thermocline depth and SST in the ITCZ region are discussed, including the preconditioning role of the winter cross-equatorial SST gradient.

Full access
Renellys C. Perez, Dudley B. Chelton, and Robert N. Miller

Abstract

The latitudinal structure of annual equatorial Rossby waves in the tropical Pacific Ocean based on sea surface height (SSH) and thermocline depth observations is equatorially asymmetric, which differs from the structure of the linear waves of classical theory that are often presumed to dominate the variability. The nature of this asymmetry is such that the northern SSH maximum (along 5.5°N) is roughly 2 times that of the southern maximum (along 6.5°S). In addition, the observed westward phase speeds are roughly 0.5 times the predicted speed of 90 cm s−1 and are also asymmetric with the northern phase speeds, about 25% faster than the southern phase speeds. One hypothesized mechanism for the observed annual equatorial Rossby wave amplitude asymmetry is modification of the meridional structure by the asymmetric meridional shears associated with the equatorial current system. Another hypothesis is the asymmetry of the annually varying wind forcing, which is stronger north of the equator. A reduced-gravity, nonlinear, β-plane model with rectangular basin geometry forced by idealized Quick Scatterometer (QuikSCAT) wind stress is used to test these two mechanisms. The model with an asymmetric background mean current system perturbed with symmetric annually varying winds consistently produces asymmetric Rossby waves with a northern maximum (4.7°N) that is 1.6 times the southern maximum (5.2°S) and westward phase speeds of approximately 53 ± 13 cm s−1 along both latitudes. Simulations with a symmetric background mean current system perturbed by asymmetric annually varying winds fail to produce the observed Rossby wave structure unless the perturbation winds become strong enough for nonlinear interactions to produce asymmetry in the background mean current system. The observed latitudinal asymmetry of the phase speed is found to be critically dependent on the inclusion of realistic coastline boundaries.

Full access
Renellys C. Perez, Meghan F. Cronin, and William S. Kessler

Abstract

Shipboard measurements and a model are used to describe the mean structure of meridional–vertical tropical cells (TCs) in the central equatorial Pacific and a secondary circulation associated with the northern front of the cold tongue. The shape of the front is convoluted by the passage of tropical instability waves (TIWs). When velocities are averaged in a coordinate system centered on the instantaneous position of the northern front, the measurements show a near-surface minimum in northward flow north of the surface front (convergent flow near the front). This convergence and inferred downwelling extend below the surface mixed layer, tilt poleward with depth, and are meridionally bounded by regions of divergence and upwelling. Similarly, the model shows that, on average, surface cold tongue water moves northward toward the frontal region and dives below tilted front, whereas subsurface water north of the front moves southward toward the front, upwells, and then moves northward in the surface mixed layer. The model is used to demonstrate that this mean quasi-adiabatic secondary circulation is not a frozen field that migrates with the front but is instead highly dependent on the phase of the TIWs: southward-upwelling flow on the warm side of the front tends to occur when the front is displaced southward, whereas northward-downwelling flow on the cold side of the front occurs when the front is displaced northward. Consequently, when averaged in geographic coordinates, the observed and simulated TCs appear to be equatorially asymmetric and show little trace of a secondary circulation near the mean front.

Full access
Renellys C. Perez, Silvia L. Garzoli, Christopher S. Meinen, and Ricardo P. Matano

Abstract

Two ocean general circulation models are used to test the ability of geostrophic velocity measurement systems to observe the meridional overturning circulation (MOC) and meridional heat transport (MHT) in the South Atlantic. Model sampling experiments are conducted at five latitudes (between 15° and 34.5°S) spanning the range of extratropical current regimes in the South Atlantic. Two methods of estimating geopotential height anomalies and geostrophic velocities are tested, simulating dynamic height moorings (TS array) and current and pressure recording inverted echo sounders (CPIES) deployed within the models. The TS array accurately reproduces the MOC variability with a slight preference for higher latitudes, while the CPIES array has skill only at higher latitudes resulting from the increased geopotential height anomaly signal. Whether direct model velocities or geostrophic velocities are used, MHT and the MOC are strongly correlated, and successful reconstruction of MHT only occurs when there is skill in the MOC reconstructions. The geopotential height anomaly signal is concentrated near the boundaries along 34.5°S, suggesting that this is an advantageous latitude for deployment of an in situ array. Four reduced arrays that build upon the sites from two existing pilot arrays along 34.5°S were examined. For these realistically sized arrays, the MOC and MHT reconstructions from the TS and CPIES arrays have comparable skill, and an array of approximately 20 instruments can be effectively used to reproduce the temporal evolution and vertical structure of the MOC and MHT.

Full access
Soumi Chakravorty, Renellys C. Perez, Bruce T. Anderson, Benjamin S. Giese, Sarah M. Larson, and Valentina Pivotti

Abstract

During the positive phase of the North Pacific Oscillation, westerly wind anomalies over the subtropical North Pacific substantially increase subsurface heat content along the equator by “trade wind charging” (TWC). TWC provides a direct pathway between extratropical atmospheric circulation and El Niño–Southern Oscillation (ENSO) initiation. Previous model studies of this mechanism lacked the ocean–atmospheric coupling needed for ENSO growth, so it is crucial to examine whether TWC-induced heat content anomalies develop into ENSO events in a coupled model. Here, coupled model experiments, forced with TWC favorable (+TWC) or unfavorable (−TWC) wind stress, are used to examine the ENSO response to TWC. The forcing is imposed on the ocean component of the model through the first winter and then the model evolves in a fully coupled configuration through the following winter. The +TWC (−TWC) forcing consistently charges (discharges) the equatorial Pacific in spring and generates positive (negative) subsurface temperature anomalies. These subsurface temperature anomalies advect eastward and upward along the equatorial thermocline and emerge as like-signed sea surface temperature (SST) anomalies in the eastern Pacific, creating favorable conditions upon which coupled air–sea feedback can act. During the fully coupled stage, warm SST anomalies in +TWC forced simulations are amplified by coupled feedbacks and lead to El Niño events. However, while −TWC forcing results in cool SST anomalies, pre-existing warm SST anomalies in the far eastern equatorial Pacific persist and induce local westerly wind anomalies that prevent consistent development of La Niña conditions. While the TWC mechanism provides adequate equatorial heat content to fuel ENSO development, other factors also play a role in determining whether an ENSO event develops.

Restricted access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Full access