Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Reza Khanbilvardi x
- Refine by Access: All Content x
Abstract
This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1244 rainfall stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: trend can be attributed to changes in global surface temperature anomalies or to a combination of well-known cyclical climate modes with varying quasiperiodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypothesis is made based on the Watanabe–Akaike information criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the U.S. Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to El Niño–Southern Oscillation, the North Atlantic Oscillation, the Pacific decadal oscillation, and the Atlantic multidecadal oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the U.S. Northwest, West, and Southwest climate regions.
Abstract
This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1244 rainfall stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: trend can be attributed to changes in global surface temperature anomalies or to a combination of well-known cyclical climate modes with varying quasiperiodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypothesis is made based on the Watanabe–Akaike information criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the U.S. Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to El Niño–Southern Oscillation, the North Atlantic Oscillation, the Pacific decadal oscillation, and the Atlantic multidecadal oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the U.S. Northwest, West, and Southwest climate regions.
Abstract
Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions. This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline interpolation method is used to estimate half-hourly global LST from the MODIS measurements. A preliminary assessment of interpolated LST with hourly ground-based observations over selected stations of North America shows bias and an error of less than 1 K. Results suggest that the present interpolation method is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the 15-yr time series of the diurnal LST record shows an overall decrease of 0.5 K in amplitude over the Northern Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.
Abstract
Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions. This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline interpolation method is used to estimate half-hourly global LST from the MODIS measurements. A preliminary assessment of interpolated LST with hourly ground-based observations over selected stations of North America shows bias and an error of less than 1 K. Results suggest that the present interpolation method is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the 15-yr time series of the diurnal LST record shows an overall decrease of 0.5 K in amplitude over the Northern Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.
Abstract
Extreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of life and property. Despite these hazards, little is known about the city-scale variability of heavy rainfall events. In the current study, gridded stage IV radar data from 2002 to 2015 are employed to investigate the clustering and the spatial variability of simultaneous rainfall exceedances in the greater New York area. Multivariate clustering based on partitioning around medoids is applied to the extreme rainfall events’ average intensity and areal extent for the 1- and 24-h accumulated rainfall during winter (December–February) and summer (June–August) seasons. The atmospheric teleconnections of the daily extreme event for winter and summer are investigated using compositing of ERA-Interim. For both 1- and 24-h durations, the winter season extreme rainfall events have larger areal extent than the summer season extreme rainfall events. Winter extreme events are associated with deep and organized circulation patterns that lead to more areal extent, and the summer events are associated with localized frontal systems that lead to smaller areal extents. The average intensities of the 1-h extreme rainfall events in summer are much higher than the average intensities of the 1-h extreme rainfall events in winter. A clear spatial demarcation exists within the five boroughs in New York City for winter extreme events. Resultant georeferenced cluster maps can be extremely useful in risk analysis and green infrastructures planning as well as sewer systems’ management at the city scale.
Abstract
Extreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of life and property. Despite these hazards, little is known about the city-scale variability of heavy rainfall events. In the current study, gridded stage IV radar data from 2002 to 2015 are employed to investigate the clustering and the spatial variability of simultaneous rainfall exceedances in the greater New York area. Multivariate clustering based on partitioning around medoids is applied to the extreme rainfall events’ average intensity and areal extent for the 1- and 24-h accumulated rainfall during winter (December–February) and summer (June–August) seasons. The atmospheric teleconnections of the daily extreme event for winter and summer are investigated using compositing of ERA-Interim. For both 1- and 24-h durations, the winter season extreme rainfall events have larger areal extent than the summer season extreme rainfall events. Winter extreme events are associated with deep and organized circulation patterns that lead to more areal extent, and the summer events are associated with localized frontal systems that lead to smaller areal extents. The average intensities of the 1-h extreme rainfall events in summer are much higher than the average intensities of the 1-h extreme rainfall events in winter. A clear spatial demarcation exists within the five boroughs in New York City for winter extreme events. Resultant georeferenced cluster maps can be extremely useful in risk analysis and green infrastructures planning as well as sewer systems’ management at the city scale.
Abstract
Accurate estimation of passive microwave land surface emissivity (LSE) is crucial for numerical weather prediction model data assimilation, for microwave retrievals of land precipitation and atmospheric profiles, and for a better understanding of land surface and subsurface characteristics. In this study, global instantaneous LSE is estimated for a 9-yr period from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and for a 5-yr period from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors. Estimates of LSE from both sensors were obtained by using an updated algorithm that minimizes the discrepancy between the differences in penetration depths from microwave and infrared remote sensing observations. Concurrent ancillary datasets such as skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) and profiles of air temperature and humidity from the Atmospheric Infrared Sounder are used. The latest collection 6 of MODIS skin temperature is used for the LSE estimation, and the differences between collections 6 and 5 are also comprehensively assessed. Analyses reveal that the differences between these two versions of infrared-based skin temperatures could lead to approximately a 0.015 difference in passive microwave LSE values, especially in arid regions. The comparison of global mean LSE features from the combined use of AMSR-E and AMSR2 with an independent product—Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves (TELSEM2)—shows spatial pattern correlations of order 0.92 at all frequencies. However, there are considerable differences in magnitude between these two LSE estimates, possibly because of differences in incidence angles, frequencies, observation times, and ancillary datasets.
Abstract
Accurate estimation of passive microwave land surface emissivity (LSE) is crucial for numerical weather prediction model data assimilation, for microwave retrievals of land precipitation and atmospheric profiles, and for a better understanding of land surface and subsurface characteristics. In this study, global instantaneous LSE is estimated for a 9-yr period from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and for a 5-yr period from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors. Estimates of LSE from both sensors were obtained by using an updated algorithm that minimizes the discrepancy between the differences in penetration depths from microwave and infrared remote sensing observations. Concurrent ancillary datasets such as skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) and profiles of air temperature and humidity from the Atmospheric Infrared Sounder are used. The latest collection 6 of MODIS skin temperature is used for the LSE estimation, and the differences between collections 6 and 5 are also comprehensively assessed. Analyses reveal that the differences between these two versions of infrared-based skin temperatures could lead to approximately a 0.015 difference in passive microwave LSE values, especially in arid regions. The comparison of global mean LSE features from the combined use of AMSR-E and AMSR2 with an independent product—Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves (TELSEM2)—shows spatial pattern correlations of order 0.92 at all frequencies. However, there are considerable differences in magnitude between these two LSE estimates, possibly because of differences in incidence angles, frequencies, observation times, and ancillary datasets.