Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: Ricardo M. Trigo x
- Refine by Access: All Content x
Abstract
March monthly accumulated precipitation in the central and western regions of the Iberian Peninsula presents a clear continuous decline of 50% during the 1960–97 period. A finer analysis using daily data reveals that this trend is exactly confined to the month of March. However, this is merely the most visible aspect of a larger phenomenon over the North Atlantic/European sector. The European precipitation trends in March for the period 1960–2000 show a clear distribution of increasing precipitation in the northern regions (the British Isles and parts of Scandinavia) together with decreasing trends throughout the western Mediterranean Basin.
Relevant circulation changes over the North Atlantic and European sectors explain these precipitation trends. First, a regional Eulerian approach by means of a weather-type (WT) classification shows that the major rainfall contributors in March display significantly decreasing frequencies for the Iberian Peninsula, in contrast to the corresponding “wet” weather types for the U.K./Ireland sector, which display increasing frequencies. Within a larger context, a Lagrangian approach, based on the analysis of storm tracks over Europe and the North Atlantic region, reveals dramatic changes in the location of cyclones in the last four decades that coincide with the corresponding precipitation trends in Europe. The North Atlantic Oscillation is suggested to be the most important large-scale factor controlling both the circulation changes and the precipitation trends over the Euro–Atlantic area in March. Finally, the potential impact of reduced precipitation for rivers and water resources in the Iberian Peninsula is considered.
Abstract
March monthly accumulated precipitation in the central and western regions of the Iberian Peninsula presents a clear continuous decline of 50% during the 1960–97 period. A finer analysis using daily data reveals that this trend is exactly confined to the month of March. However, this is merely the most visible aspect of a larger phenomenon over the North Atlantic/European sector. The European precipitation trends in March for the period 1960–2000 show a clear distribution of increasing precipitation in the northern regions (the British Isles and parts of Scandinavia) together with decreasing trends throughout the western Mediterranean Basin.
Relevant circulation changes over the North Atlantic and European sectors explain these precipitation trends. First, a regional Eulerian approach by means of a weather-type (WT) classification shows that the major rainfall contributors in March display significantly decreasing frequencies for the Iberian Peninsula, in contrast to the corresponding “wet” weather types for the U.K./Ireland sector, which display increasing frequencies. Within a larger context, a Lagrangian approach, based on the analysis of storm tracks over Europe and the North Atlantic region, reveals dramatic changes in the location of cyclones in the last four decades that coincide with the corresponding precipitation trends in Europe. The North Atlantic Oscillation is suggested to be the most important large-scale factor controlling both the circulation changes and the precipitation trends over the Euro–Atlantic area in March. Finally, the potential impact of reduced precipitation for rivers and water resources in the Iberian Peninsula is considered.
Abstract
The Iberian rainfall regime is characterized by a strong seasonal cycle and large interannual variability. Typically, frequency distributions of monthly precipitation present a large spread of values, implying frequent episodes of very wet or very dry years. Unfortunately, the most recent generation of general circulation models (GCMs) still has serious problems when modeling monthly precipitation over southern Europe. However, these models are able to reproduce the main patterns of atmospheric circulation, such as those derived from a principal component analysis of the sea level pressure anomaly field. Many downscaling techniques have been developed in recent years, all having in common the need to establish statistical links between the large-scale circulation and the observed precipitation at a local or regional scale. The final objective is usually the application of such transfer functions to GCM output.
In this work, linear and nonlinear downscaling transfer functions are developed based on artificial neural networks (ANNs), to downscale monthly precipitation to nine grid boxes over the Iberian Peninsula. The nonlinear ANN models were run 20 times, with different initial conditions, in order to study the stability of the final results. All the models were developed on a seasonal basis, calibrated between 1901 and 1940 and validated between 1941 and 1990. It was found that linear or slightly nonlinear ANN models (with just one node in the first layer) were more capable of reproducing the observed precipitation than more complex nonlinear ANN models. GCM data from a greenhouse gas–plus-sulfates run from the Hadley Centre Model (HadCM2) were used to reproduce present-day precipitation over Iberia. It was found that the precipitation characteristics (mean, variance, and empirical distribution) were better reproduced by the downscaled results than by the GCM direct output. Precipitation scenarios constructed for the future (2041–90) reveal an increase of precipitation in winter and small decreases in most sectors of Iberia for the spring and autumn seasons. Such scenarios are in good agreement with those obtained by other researchers using different downscaling techniques with HadCM2 data.
Abstract
The Iberian rainfall regime is characterized by a strong seasonal cycle and large interannual variability. Typically, frequency distributions of monthly precipitation present a large spread of values, implying frequent episodes of very wet or very dry years. Unfortunately, the most recent generation of general circulation models (GCMs) still has serious problems when modeling monthly precipitation over southern Europe. However, these models are able to reproduce the main patterns of atmospheric circulation, such as those derived from a principal component analysis of the sea level pressure anomaly field. Many downscaling techniques have been developed in recent years, all having in common the need to establish statistical links between the large-scale circulation and the observed precipitation at a local or regional scale. The final objective is usually the application of such transfer functions to GCM output.
In this work, linear and nonlinear downscaling transfer functions are developed based on artificial neural networks (ANNs), to downscale monthly precipitation to nine grid boxes over the Iberian Peninsula. The nonlinear ANN models were run 20 times, with different initial conditions, in order to study the stability of the final results. All the models were developed on a seasonal basis, calibrated between 1901 and 1940 and validated between 1941 and 1990. It was found that linear or slightly nonlinear ANN models (with just one node in the first layer) were more capable of reproducing the observed precipitation than more complex nonlinear ANN models. GCM data from a greenhouse gas–plus-sulfates run from the Hadley Centre Model (HadCM2) were used to reproduce present-day precipitation over Iberia. It was found that the precipitation characteristics (mean, variance, and empirical distribution) were better reproduced by the downscaled results than by the GCM direct output. Precipitation scenarios constructed for the future (2041–90) reveal an increase of precipitation in winter and small decreases in most sectors of Iberia for the spring and autumn seasons. Such scenarios are in good agreement with those obtained by other researchers using different downscaling techniques with HadCM2 data.
Abstract
Several provinces of China experienced an intense drought episode during 2009 and 2010. The drought was particularly severe in southwestern and northern China, where the accumulated precipitation from May 2009 to April 2010 was about 25% less than normal. The decline of accumulated precipitation over northern China was mostly noticeable during the summer season of 2009 and it was comparable to recent dry episodes. The southwestern China drought resulted from a sequence of dry months from summer 2009 to winter 2010, corresponding to the driest event since at least 1951. The suppression of rainfall in summer over both regions was in agreement with a weakened broad-scale South Asian summer monsoon, possibly influenced by an El Niño developing phase, whereas the extremely negative phases of the Arctic Oscillation during the winter of 2010 may have contributed to the persistence of the drought in southwestern China. The assessment of the associated impacts indicates that water reservoirs were severely affected with a ~20% reduction in the nationwide hydroelectrical production during the drought event. Furthermore, an analysis of the normalized difference vegetation index data reveals that large cropland sectors of northern and eastern China experienced up to 8 months of persistently stressed vegetation between May 2009 and July 2010, while southwestern China was relatively less affected. Such different regional vegetative responses are interpreted in terms of the land-cover type, agriculture management, and their dependence on seasonal precipitation and water availability for irrigation.
Abstract
Several provinces of China experienced an intense drought episode during 2009 and 2010. The drought was particularly severe in southwestern and northern China, where the accumulated precipitation from May 2009 to April 2010 was about 25% less than normal. The decline of accumulated precipitation over northern China was mostly noticeable during the summer season of 2009 and it was comparable to recent dry episodes. The southwestern China drought resulted from a sequence of dry months from summer 2009 to winter 2010, corresponding to the driest event since at least 1951. The suppression of rainfall in summer over both regions was in agreement with a weakened broad-scale South Asian summer monsoon, possibly influenced by an El Niño developing phase, whereas the extremely negative phases of the Arctic Oscillation during the winter of 2010 may have contributed to the persistence of the drought in southwestern China. The assessment of the associated impacts indicates that water reservoirs were severely affected with a ~20% reduction in the nationwide hydroelectrical production during the drought event. Furthermore, an analysis of the normalized difference vegetation index data reveals that large cropland sectors of northern and eastern China experienced up to 8 months of persistently stressed vegetation between May 2009 and July 2010, while southwestern China was relatively less affected. Such different regional vegetative responses are interpreted in terms of the land-cover type, agriculture management, and their dependence on seasonal precipitation and water availability for irrigation.
Abstract
An automated atmospheric rivers (ARs) detection algorithm is used for the North Atlantic Ocean basin that allows the identification and a comprehensive characterization of the major AR events that affected the Iberian Peninsula over the 1948–2012 period. The extreme precipitation days in the Iberian Peninsula and their association (or not) with the occurrence of ARs is analyzed in detail. The extreme precipitation days are ranked by their magnitude and are obtained after considering 1) the area affected and 2) the precipitation intensity. Different rankings are presented for the entire Iberian Peninsula, for Portugal, and for the six largest Iberian river basins (Minho, Duero, Tagus, Guadiana, Guadalquivir, and Ebro) covering the 1950–2008 period. Results show that the association between ARs and extreme precipitation days in the western domains (Portugal, Minho, Tagus, and Duero) is noteworthy, while for the eastern and southern basins (Ebro, Guadiana, and Guadalquivir) the impact of ARs is reduced. In addition, the contribution from ARs toward the extreme precipitation ranking list is not homogenous, playing an overwhelming role for the most extreme precipitation days but decreasing significantly with the less extreme precipitation days. Moreover, and given the narrow nature of the ARs, the location of the ARs over each subdomain is closely related to the occurrence (or not) of extreme precipitation days.
Abstract
An automated atmospheric rivers (ARs) detection algorithm is used for the North Atlantic Ocean basin that allows the identification and a comprehensive characterization of the major AR events that affected the Iberian Peninsula over the 1948–2012 period. The extreme precipitation days in the Iberian Peninsula and their association (or not) with the occurrence of ARs is analyzed in detail. The extreme precipitation days are ranked by their magnitude and are obtained after considering 1) the area affected and 2) the precipitation intensity. Different rankings are presented for the entire Iberian Peninsula, for Portugal, and for the six largest Iberian river basins (Minho, Duero, Tagus, Guadiana, Guadalquivir, and Ebro) covering the 1950–2008 period. Results show that the association between ARs and extreme precipitation days in the western domains (Portugal, Minho, Tagus, and Duero) is noteworthy, while for the eastern and southern basins (Ebro, Guadiana, and Guadalquivir) the impact of ARs is reduced. In addition, the contribution from ARs toward the extreme precipitation ranking list is not homogenous, playing an overwhelming role for the most extreme precipitation days but decreasing significantly with the less extreme precipitation days. Moreover, and given the narrow nature of the ARs, the location of the ARs over each subdomain is closely related to the occurrence (or not) of extreme precipitation days.
Abstract
Blocks are high-impact atmospheric systems of the mid-/high latitudes and have been widely addressed in meteorological and climatological studies. However, the diversity of blocking definitions makes comparison across studies not straightforward. Here, we propose a conceptual model for the life cycle of high pressure systems that recognizes the multifaceted and transient characteristics of these events. A detection scheme identifies and classifies daily structures, discriminating between subtropical ridges and different types of well-established blocking patterns (omega and dipole-like Rex). This is complemented by a spatiotemporal tracking algorithm, which accounts for transitions between patterns, providing a global catalog of events for 1950–2020. Criteria rely on simple metrics retrieved from one single-level field, and allow implementation in different datasets and climatic realms. Using reanalysis data, we provide illustrative examples, the first global and seasonal climatological assessment of the diversity of high pressure events, their associated impacts, and recent frequency changes. Results reveal that ridge and blocking events affect widespread regions from the subtropics to high latitudes. We find remarkably distinct regional impacts among the considered types, which had been hindered in previous studies by restricted focus on Rex-like structures. This plethora of high pressure systems is much less evident in the Southern Hemisphere, where activity is dominated by subtropical ridges and secluded blocking-like patterns. We report increasing frequencies of low-latitude systems, although with hemispheric and seasonal differences that can only be partially interpreted as a consequence of subtropical expansion. Blocking frequency trends exhibit more heterogeneous and complex spatial patterns, with no evidence of generalized significant changes.
Abstract
Blocks are high-impact atmospheric systems of the mid-/high latitudes and have been widely addressed in meteorological and climatological studies. However, the diversity of blocking definitions makes comparison across studies not straightforward. Here, we propose a conceptual model for the life cycle of high pressure systems that recognizes the multifaceted and transient characteristics of these events. A detection scheme identifies and classifies daily structures, discriminating between subtropical ridges and different types of well-established blocking patterns (omega and dipole-like Rex). This is complemented by a spatiotemporal tracking algorithm, which accounts for transitions between patterns, providing a global catalog of events for 1950–2020. Criteria rely on simple metrics retrieved from one single-level field, and allow implementation in different datasets and climatic realms. Using reanalysis data, we provide illustrative examples, the first global and seasonal climatological assessment of the diversity of high pressure events, their associated impacts, and recent frequency changes. Results reveal that ridge and blocking events affect widespread regions from the subtropics to high latitudes. We find remarkably distinct regional impacts among the considered types, which had been hindered in previous studies by restricted focus on Rex-like structures. This plethora of high pressure systems is much less evident in the Southern Hemisphere, where activity is dominated by subtropical ridges and secluded blocking-like patterns. We report increasing frequencies of low-latitude systems, although with hemispheric and seasonal differences that can only be partially interpreted as a consequence of subtropical expansion. Blocking frequency trends exhibit more heterogeneous and complex spatial patterns, with no evidence of generalized significant changes.
Abstract
Recent studies have stressed the key role of the east Atlantic (EA) pattern and its interactions with the North Atlantic Oscillation (NAO) in Euro-Atlantic climate variability. However, instrumental records of these leading patterns of variability are short, hampering a proper characterization of the atmospheric circulation beyond the mid-nineteenth century. In this work, we present the longest (1685–2014) observational-based records of winter NAO and EA indices as well as estimates of the North Atlantic eddy-driven jet stream speed and latitude for the same period. The time series display large variability from interannual to multidecadal time scales, with, for example, positive (negative) EA (NAO) phases dominating before 1750 (during much of the nineteenth century). By identifying winters with different combinations of NAO/EA phases in the twentieth century, our results highlight the additional role of EA in shaping the North Atlantic action centers and the European climate responses to NAO. The EA interference with the NAO signal is stronger in precipitation than in temperature and affects areas with strong responses to NAO such as Greenland and the western Mediterranean, which prevents simplistic relationships of natural proxies with NAO. The last three centuries uncover multidecadal periods dominated by specific NAO/EA states and substantial interannual-to-centennial variability in the North Atlantic jet stream, thus providing new evidence of the dynamics behind some outstanding periods. Transitions in the NAO/EA phase space have been recurrent and pin down long-lasting anomalies, such as the displacement of the North Atlantic action centers in the late twentieth century, besides some disagreements between NAO indices.
Abstract
Recent studies have stressed the key role of the east Atlantic (EA) pattern and its interactions with the North Atlantic Oscillation (NAO) in Euro-Atlantic climate variability. However, instrumental records of these leading patterns of variability are short, hampering a proper characterization of the atmospheric circulation beyond the mid-nineteenth century. In this work, we present the longest (1685–2014) observational-based records of winter NAO and EA indices as well as estimates of the North Atlantic eddy-driven jet stream speed and latitude for the same period. The time series display large variability from interannual to multidecadal time scales, with, for example, positive (negative) EA (NAO) phases dominating before 1750 (during much of the nineteenth century). By identifying winters with different combinations of NAO/EA phases in the twentieth century, our results highlight the additional role of EA in shaping the North Atlantic action centers and the European climate responses to NAO. The EA interference with the NAO signal is stronger in precipitation than in temperature and affects areas with strong responses to NAO such as Greenland and the western Mediterranean, which prevents simplistic relationships of natural proxies with NAO. The last three centuries uncover multidecadal periods dominated by specific NAO/EA states and substantial interannual-to-centennial variability in the North Atlantic jet stream, thus providing new evidence of the dynamics behind some outstanding periods. Transitions in the NAO/EA phase space have been recurrent and pin down long-lasting anomalies, such as the displacement of the North Atlantic action centers in the late twentieth century, besides some disagreements between NAO indices.
Abstract
This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.
Abstract
This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.
Abstract
The 2004/05 hydrological year (October 2004 to September 2005) was characterized by intense dry conditions affecting most of western Europe (35°–55°N and 10°W–10°E). In Iberia the drought affected every month of this period, with the southern half of Iberia receiving roughly 40% of the usual precipitation by June 2005. Moreover, this episode stands as the driest event in the last 140 yr, producing major socioeconomic impacts particularly due to the large decrease in hydroelectricity and agricultural production in both Iberian countries (Portugal and Spain).
To assess the atmospheric submonthly circulation associated with this drought an Eulerian [weather types (WTs)] and a Lagrangean (objective storm tracks) analysis were combined. There was a dramatic drop in “wet” WT frequency during winter, with less than 50% of the normal value, and a corresponding increase of “dry” WTs. The storm-track analysis reveals an impressive northward displacement of cyclone trajectories in the North Atlantic sector in winter months, resulting in an almost complete absence of cyclones crossing Iberia and western Europe.
At the monthly scale, the intense drought in Iberia was due to a combination of different physical mechanisms. First, the scarce precipitation observed between November 2004 and January 2005 was associated with positive North Atlantic Oscillation (NAO) indexes for these months. In February, the East Atlantic (EA) pattern seems to be the main driver. In March neither the negative NAO (−1.8) nor the positive EA (1.1) are capable of explaining the large negative precipitation anomalies. However, it is shown that during March 2005, an intense and anomalous blocking was displaced southward of its usual location, inhibiting the occurrence of precipitation over Iberia and leading to a negative NAO index anomalously associated with low precipitation records.
Abstract
The 2004/05 hydrological year (October 2004 to September 2005) was characterized by intense dry conditions affecting most of western Europe (35°–55°N and 10°W–10°E). In Iberia the drought affected every month of this period, with the southern half of Iberia receiving roughly 40% of the usual precipitation by June 2005. Moreover, this episode stands as the driest event in the last 140 yr, producing major socioeconomic impacts particularly due to the large decrease in hydroelectricity and agricultural production in both Iberian countries (Portugal and Spain).
To assess the atmospheric submonthly circulation associated with this drought an Eulerian [weather types (WTs)] and a Lagrangean (objective storm tracks) analysis were combined. There was a dramatic drop in “wet” WT frequency during winter, with less than 50% of the normal value, and a corresponding increase of “dry” WTs. The storm-track analysis reveals an impressive northward displacement of cyclone trajectories in the North Atlantic sector in winter months, resulting in an almost complete absence of cyclones crossing Iberia and western Europe.
At the monthly scale, the intense drought in Iberia was due to a combination of different physical mechanisms. First, the scarce precipitation observed between November 2004 and January 2005 was associated with positive North Atlantic Oscillation (NAO) indexes for these months. In February, the East Atlantic (EA) pattern seems to be the main driver. In March neither the negative NAO (−1.8) nor the positive EA (1.1) are capable of explaining the large negative precipitation anomalies. However, it is shown that during March 2005, an intense and anomalous blocking was displaced southward of its usual location, inhibiting the occurrence of precipitation over Iberia and leading to a negative NAO index anomalously associated with low precipitation records.
Abstract
This study investigated the main sources of moisture in the atmosphere over the Iberian Peninsula (IP) at annual and seasonal scales using FLEXPART, a powerful new 3D Lagrangian diagnosis method that identifies the humidity contributions to the moisture budget of a region. This method can identify moisture sources at lower cost and with greater accuracy than standard isotopic content methods. The results are based on back-tracking analysis of all air masses residing over the IP in the 5-yr period from 2000 to 2004. The results show that the two most important moisture source regions affecting the IP are in a tropical–subtropical North Atlantic corridor that extends from the Gulf of Mexico to the IP, and the IP itself and the surrounding Mediterranean. The importance of these two source areas varies throughout the year, and also with respect to different climatic regions inside the IP. The former source region is the dominant moisture source for the entire IP during winter and in western regions throughout the year, whereas the latter source region dominates the moisture supply to the IP in summer and in the eastern Mediterranean region of the IP throughout the year. The results also demonstrate that winter precipitation in the IP is influenced by both atmospheric instability that forces air masses to rise, and the supply of moisture from the tropical–subtropical North Atlantic corridor on a daily scale and a seasonal basis. Thus, a combination of high (low) moisture supply from the North Atlantic corridor and high (low) atmospheric instability appears to be responsible for the most recent wet (dry) winter in the IP.
Abstract
This study investigated the main sources of moisture in the atmosphere over the Iberian Peninsula (IP) at annual and seasonal scales using FLEXPART, a powerful new 3D Lagrangian diagnosis method that identifies the humidity contributions to the moisture budget of a region. This method can identify moisture sources at lower cost and with greater accuracy than standard isotopic content methods. The results are based on back-tracking analysis of all air masses residing over the IP in the 5-yr period from 2000 to 2004. The results show that the two most important moisture source regions affecting the IP are in a tropical–subtropical North Atlantic corridor that extends from the Gulf of Mexico to the IP, and the IP itself and the surrounding Mediterranean. The importance of these two source areas varies throughout the year, and also with respect to different climatic regions inside the IP. The former source region is the dominant moisture source for the entire IP during winter and in western regions throughout the year, whereas the latter source region dominates the moisture supply to the IP in summer and in the eastern Mediterranean region of the IP throughout the year. The results also demonstrate that winter precipitation in the IP is influenced by both atmospheric instability that forces air masses to rise, and the supply of moisture from the tropical–subtropical North Atlantic corridor on a daily scale and a seasonal basis. Thus, a combination of high (low) moisture supply from the North Atlantic corridor and high (low) atmospheric instability appears to be responsible for the most recent wet (dry) winter in the IP.
Abstract
Moisture transport over the northeastern Atlantic Ocean is an important process governing precipitation distribution and variability over western Europe. To assess its long-term variability, the vertically integrated horizontal water vapor transport (IVT) from a long-term climate simulation spanning the period 850–2100 CE was used. Results show a steady increase in moisture transport toward western Europe since the late-nineteenth century that is projected to expand during the twenty-first century under the RCP8.5 scenario. The projected IVT for 2070–99 significantly exceeds the range given by interannual–interdecadal variability of the last millennium. Changes in IVT are in line with significant increases in tropospheric moisture content, driven by the concurrent rise in surface temperatures associated with the anthropogenic climate trend. On regional scales, recent and projected precipitation changes over the British Isles follow the global positive IVT trend, whereas a robust precipitation decrease over Iberia is identified in the twenty-first century, particularly during autumn. This indicates a possible extension of stable and dry summer conditions and a decoupling between moisture availability and dynamical forcing. The investigation of circulation features reveals a mean poleward shift of moisture corridors and associated atmospheric rivers. In particular, in Iberia, a significant increase in the frequency of dry weather types is observed, accompanied by a decrease in the frequency of wet types. An opposite response is observed over the British Isles. These changes imply a stronger meridional north–south dipole in terms of pressure and precipitation distributions, enhancing the transport toward central Europe rather than to Iberia.
Abstract
Moisture transport over the northeastern Atlantic Ocean is an important process governing precipitation distribution and variability over western Europe. To assess its long-term variability, the vertically integrated horizontal water vapor transport (IVT) from a long-term climate simulation spanning the period 850–2100 CE was used. Results show a steady increase in moisture transport toward western Europe since the late-nineteenth century that is projected to expand during the twenty-first century under the RCP8.5 scenario. The projected IVT for 2070–99 significantly exceeds the range given by interannual–interdecadal variability of the last millennium. Changes in IVT are in line with significant increases in tropospheric moisture content, driven by the concurrent rise in surface temperatures associated with the anthropogenic climate trend. On regional scales, recent and projected precipitation changes over the British Isles follow the global positive IVT trend, whereas a robust precipitation decrease over Iberia is identified in the twenty-first century, particularly during autumn. This indicates a possible extension of stable and dry summer conditions and a decoupling between moisture availability and dynamical forcing. The investigation of circulation features reveals a mean poleward shift of moisture corridors and associated atmospheric rivers. In particular, in Iberia, a significant increase in the frequency of dry weather types is observed, accompanied by a decrease in the frequency of wet types. An opposite response is observed over the British Isles. These changes imply a stronger meridional north–south dipole in terms of pressure and precipitation distributions, enhancing the transport toward central Europe rather than to Iberia.