Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Richard A. Ferrare x
  • All content x
Clear All Modify Search
Allison McComiskey and Richard A. Ferrare
Full access
Tyler J. Thorsen, David M. Winker, and Richard A. Ferrare

Abstract

A lower bound on the uncertainty in observational estimates of the aerosol direct radiative effect (DRE; the direct interaction with solar radiation by all aerosols) and the aerosol direct radiative forcing [DRF; the radiative effect of just anthropogenic aerosols (RFari)] is quantified by making the optimistic assumption that global aerosol observations can be made with the accuracy found in the Aerosol Robotic Network (AERONET) sun photometer retrievals. The global-mean all-sky aerosol DRE uncertainty was found to be 1.1 W m−2 (one standard deviation). The global-mean all-sky aerosol DRF (RFari) uncertainty was determined to be 0.31 W m−2. The total uncertainty in both quantities is dominated by contributions from the aerosol single scattering albedo uncertainty. These uncertainty estimates were compared to a literature survey of mostly satellite-based aerosol DRE/DRF values. Comparisons to previous studies reveal that most have significantly underestimated the aerosol DRE uncertainty. Past estimates of the aerosol DRF uncertainty are smaller (on average) than our optimistic observational estimates, including the aerosol DRF uncertainty given in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). This disconnect between our observation-based uncertainty and that found in past aerosol DRF studies that rely, at least in part, on modeling is discussed. Also quantified is a potential reduction in the current observational uncertainty possible with a future generation of satellite observations that would leverage aerosol typing and more refined vertical information.

Restricted access
Rupa Kamineni, T. N. Krishnamurti, S. Pattnaik, Edward V. Browell, Syed Ismail, and Richard A. Ferrare

Abstract

This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remotely sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. It is shown here that the use of these additional datasets, more than those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment in which such datasets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these datasets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity datasets for improved model results. It is noted that the forecast impact from the moisture-profiling datasets for some of the storms is even larger than the impact from the use of dropwindsonde-based winds.

Full access
Tyler J. Thorsen, Richard A. Ferrare, Seiji Kato, and David M. Winker

Abstract

Both to reconcile the large range in satellite-based estimates of the aerosol direct radiative effect (DRE) and to optimize the design of future observing systems, this study builds a framework for assessing aerosol DRE uncertainty. Shortwave aerosol DRE radiative kernels (Jacobians) were derived using the MERRA-2 reanalysis data. These radiative kernels give the differential response of the aerosol DRE to perturbations in the aerosol extinction coefficient, aerosol single-scattering albedo, aerosol asymmetry factor, surface albedo, cloud fraction, and cloud optical depth. This comprehensive set of kernels provides a convenient way to consistently and accurately assess the aerosol DRE uncertainties that result from observational or model-based uncertainties. The aerosol DRE kernels were used to test the effect of simplifying the full vertical profile of aerosol scattering properties into column-integrated quantities. This analysis showed that, although the clear-sky aerosol DRE can be had fairly accurately, more significant errors occur for the all-sky DRE. The sensitivity in determining the broadband spectral dependencies of the aerosol scattering properties directly from a limited set of wavelengths was quantified. These spectral dependencies can be reasonably constrained using column-integrated aerosol scattering properties in the midvisible and near-infrared wavelengths. Separating the aerosol DRE and its kernels by scene type shows that accurate aerosol properties in the clear sky are the most crucial component of the global aerosol DRE. In cloudy skies, determining aerosol properties in the presence of optically thin cloud is more radiatively important than doing so when optically thick cloud is present.

Free access
J. E. M. Goldsmith, Scott E. Bisson, Richard A. Ferrare, Keith D. Evans, David N. Whiteman, and S. H. Melfi

Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreed within 0.15 g kg−1 between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g kg−1 in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

Full access
Volker Wulfmeyer, Hans-Stefan Bauer, Matthias Grzeschik, Andreas Behrendt, Francois Vandenberghe, Edward V. Browell, Syed Ismail, and Richard A. Ferrare

Abstract

Four-dimensional variational assimilation of water vapor differential absorption lidar (DIAL) data has been applied for investigating their impact on the initial water field for mesoscale weather forecasting. A case that was observed during the International H2O Project (IHOP_2002) has been selected. During 24 May 2002, data from the NASA Lidar Atmospheric Sensing Experiment were available upstream of a convective system that formed later along the dryline and a cold front. Tools were developed for routinely assimilating water vapor DIAL data into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The results demonstrate a large impact on the initial water vapor field. This is due to the high resolution and accuracy of DIAL data making the observation of the high spatial variability of humidity in the region of the dryline and of the cold front possible. The water vapor field is mainly adjusted by a modification of the atmospheric wind field changing the moisture transport. A positive impact of the improved initial fields on the spatial/temporal prediction of convective initiation is visible. The results demonstrate the high value of accurate, vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.

Full access
Larry K. Berg, Carl M. Berkowitz, John A. Ogren, Chris A. Hostetler, Richard A. Ferrare, Manvendra K. Dubey, Elisabeth Andrews, Richard L. Coulter, Johnathan W. Hair, John M. Hubbe, Yin-Nan Lee, Claudio Mazzoleni, Jason Olfert, and Stephen R. Springston

The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields in the vicinity of Oklahoma City during June 2007. CHAPS is one of few studies that have had an aerosol mass spectrometer (AMS) sampling downstream of a counterflow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of activated aerosols within the cumuli. The results from CHAPS provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA Langley King Air B200, which carried the downward-looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol optical properties, profiles of aerosol backscatter, and meteorological conditions, including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of 8 research flights were made by the G-l and 18 by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

Full access
Ali H. Omar, David M. Winker, Mark A. Vaughan, Yongxiang Hu, Charles R. Trepte, Richard A. Ferrare, Kam-Pui Lee, Chris A. Hostetler, Chieko Kittaka, Raymond R. Rogers, Ralph E. Kuehn, and Zhaoyan Liu

Abstract

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.

Full access
Syed Ismail, Richard A. Ferrare, Edward V. Browell, Gao Chen, Bruce Anderson, Susan A. Kooi, Anthony Notari, Carolyn F. Butler, Sharon Burton, Marta Fenn, Jason P. Dunion, Gerry Heymsfield, T. N. Krishnamurti, and Mrinal K. Biswas

Abstract

The Lidar Atmospheric Sensing Experiment (LASE) on board the NASA DC-8 measured high-resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan air layer (SAL). These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its interactions with AEWs and TCs. Three case studies were selected for detailed analysis: (i) a stratified SAL, with fine structure and layering (unlike a well-mixed SAL), (ii) a SAL with high relative humidity (RH), and (iii) an AEW surrounded by SAL dry air intrusions. Profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in the SAL, convection, and clear air regions. LASE extinction-to-backscatter ratios for the dust layers varied from 35 ± 5 to 45 ± 5 sr, well within the range of values determined by other lidar systems. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively. An analysis of LASE data suggests that the SAL suppresses low-altitude convection. Midlevel convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on 20 August 2008. This interaction is responsible for the transfer of about 7 × 1015 J (or 8 × 103 J m−2) latent heat energy within a day to the SAL. Initial modeling studies that used LASE water vapor profiles show sensitivity to and improvements in model forecasts of an AEW.

Full access
Ralph A. Kahn, Tim A. Berkoff, Charles Brock, Gao Chen, Richard A. Ferrare, Steven Ghan, Thomas F. Hansico, Dean A. Hegg, J. Vanderlei Martins, Cameron S. McNaughton, Daniel M. Murphy, John A. Ogren, Joyce E. Penner, Peter Pilewskie, John H. Seinfeld, and Douglas R. Worsnop

Abstract

A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.

Open access