Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Richard Armstrong x
- Refine by Access: All Content x
Abstract
A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
Abstract
A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
Abstract
This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.
Abstract
This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.
Abstract
The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Microwave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow wetness, snow depth transects, and soil moisture. The stem and canopy temperature and xylem sap flux of several trees were monitored continuously. Five micrometeorological towers monitored ambient conditions and provided forcing datasets for 1D snow and soil models. Arrays of pyranometers (0.3–3 μm) and a scanning thermal radiometer (8–12 μm) characterized the variability of radiative receipt in the forests. A field spectroradiometer measured the hyperspectral hemispherical-directional reflectance of the snow surface. These measurements, together with the ground-based remote sensing, provide the framework for evaluating and improving microwave radiative transfer models and coupling them to land surface models. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
Abstract
The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Microwave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow wetness, snow depth transects, and soil moisture. The stem and canopy temperature and xylem sap flux of several trees were monitored continuously. Five micrometeorological towers monitored ambient conditions and provided forcing datasets for 1D snow and soil models. Arrays of pyranometers (0.3–3 μm) and a scanning thermal radiometer (8–12 μm) characterized the variability of radiative receipt in the forests. A field spectroradiometer measured the hyperspectral hemispherical-directional reflectance of the snow surface. These measurements, together with the ground-based remote sensing, provide the framework for evaluating and improving microwave radiative transfer models and coupling them to land surface models. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
Abstract
The Copernicus Atmosphere Monitoring Service (CAMS), part of the European Union’s Earth observation program Copernicus, entered operations in July 2015. Implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) as a truly European effort with over 23,500 direct data users and well over 200 million end users worldwide as of March 2022, CAMS delivers numerous global and regional information products about air quality, inventory-based emissions and observation-based surface fluxes of greenhouse gases and from biomass burning, solar energy, ozone and UV radiation, and climate forcings. Access to CAMS products is open and free of charge via the Atmosphere Data Store. The CAMS global atmospheric composition analyses, forecasts, and reanalyses build on ECMWF’s Integrated Forecasting System (IFS) and exploit over 90 different satellite data streams. The global products are complemented by coherent higher-resolution regional air quality products over Europe derived from multisystem analyses and forecasts. CAMS information products also include policy support such as quantitative impact assessment of short- and long-term pollutant-emission mitigation scenarios, source apportionment information, and annual European air quality assessment reports. Relevant CAMS products are cited and used for instance in IPCC Assessment Reports. Providing dedicated support for users operating smartphone applications, websites, or TV bulletins in Europe and worldwide is also integral to the service. This paper presents key achievements of the CAMS initial phase (2014–21) and outlines some of its new components for the second phase (2021–28), e.g., the new Copernicus anthropogenic CO2 emissions Monitoring and Verification Support capacity that will monitor global anthropogenic emissions of key greenhouse gases.
Abstract
The Copernicus Atmosphere Monitoring Service (CAMS), part of the European Union’s Earth observation program Copernicus, entered operations in July 2015. Implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) as a truly European effort with over 23,500 direct data users and well over 200 million end users worldwide as of March 2022, CAMS delivers numerous global and regional information products about air quality, inventory-based emissions and observation-based surface fluxes of greenhouse gases and from biomass burning, solar energy, ozone and UV radiation, and climate forcings. Access to CAMS products is open and free of charge via the Atmosphere Data Store. The CAMS global atmospheric composition analyses, forecasts, and reanalyses build on ECMWF’s Integrated Forecasting System (IFS) and exploit over 90 different satellite data streams. The global products are complemented by coherent higher-resolution regional air quality products over Europe derived from multisystem analyses and forecasts. CAMS information products also include policy support such as quantitative impact assessment of short- and long-term pollutant-emission mitigation scenarios, source apportionment information, and annual European air quality assessment reports. Relevant CAMS products are cited and used for instance in IPCC Assessment Reports. Providing dedicated support for users operating smartphone applications, websites, or TV bulletins in Europe and worldwide is also integral to the service. This paper presents key achievements of the CAMS initial phase (2014–21) and outlines some of its new components for the second phase (2021–28), e.g., the new Copernicus anthropogenic CO2 emissions Monitoring and Verification Support capacity that will monitor global anthropogenic emissions of key greenhouse gases.