Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Richard G. Jones x
  • All content x
Clear All Modify Search
Carol F. McSweeney, Richard G. Jones, and Ben B. B. Booth

Abstract

Climate model ensembles, such as the Coupled Model Intercomparison Project, phase 3 (CMIP3), are used to characterize broadscale ranges of projected regional climate change and their impacts. The 17-member Hadley Centre perturbed physics GCM ensemble [Quantifying Uncertainty in Model Predictions (“QUMP”)] extends this capability by including data enabling dynamical downscaling of these ranges, and similar data are now being made available from the CMIP phase 5 (CMIP5) GCMs. These raise new opportunities to provide and apply high-resolution regional climate projections. This study highlights the importance of employing a well-considered sampling strategy from available ensembles to provide scientifically credible information on regional climate change while minimizing the computational complexity of ensemble downscaling.

A subset of the QUMP ensemble is selected for a downscaling program in Vietnam using the Providing Regional Climates for Impacts Studies (PRECIS) regional climate modeling system. Multiannual mean fields from each GCM are assessed with a focus on the Asian summer monsoon, given its importance to proposed applications of the projections. First, the study examines whether any model should be eliminated because significant deficiencies in its simulation may render its future climate projections unrealistic. No evidence is found to eliminate any of the 17 GCMs on these grounds. Second, the range of their future projections is explored and five models that best represent the full range of future climates are identified. The subset characterizes the range of both global and regional responses, and patterns of rainfall response, the wettest and driest projections for Vietnam, and different projected Asian summer monsoon changes. How these ranges of responses compare with those in the CMIP3 ensemble are also assessed, finding differences in both the signal and the spread of results in Southeast Asia.

Full access
Elizabeth J. Kendon, David P. Rowell, Richard G. Jones, and Erasmo Buonomo

Abstract

Reliable projections of future changes in local precipitation extremes are essential for informing policy decisions regarding mitigation and adaptation to climate change. In this paper, the extent to which the natural variability of the climate affects one’s ability to project the anthropogenically forced component of change in daily precipitation extremes across Europe is examined. A three-member ensemble of the Hadley Centre Regional Climate Model (HadRM3H) is used and a statistical framework is applied to estimate the uncertainty due to the full spectrum of climate variability. In particular, the results and understanding presented here suggest that annual to multidecadal natural variability may contribute significant uncertainty. For this ensemble projection, extreme precipitation changes at the grid-box level are found to be discernible above climate noise over much of northern and central Europe in winter, and parts of northern and southern Europe in summer. The ability to quantify the change to a reasonable level of accuracy is largely limited to regions in northern Europe. In general, where climate noise has a significant component varying on decadal time scales, single 30-yr climate change projections are insufficient to infer changes in the extreme tail of the underlying precipitation distribution. In this context, the need for ensembles of integrations is demonstrated and the relative effectiveness of spatial pooling and averaging for generating robust signals of extreme precipitation change is also explored. The key conclusions are expected to apply more generally to other models and forcing scenarios.

Full access
Elizabeth J. Kendon, Richard G. Jones, Erik Kjellström, and James M. Murphy

Abstract

Multimodel ensembles, whereby different global climate models (GCMs) and regional climate models (RCMs) are combined, have been widely used to explore uncertainties in regional climate projections. In this study, the extent to which information can be enhanced from sparsely filled GCM–RCM ensemble matrices and the way in which simulations should be prioritized to sample uncertainties most effectively are examined.

A simple scaling technique, whereby the local climate response in an RCM is predicted from the large-scale change in the GCM, is found to often show skill in estimating local changes for missing GCM–RCM combinations. In particular, scaling shows skill for precipitation indices (including mean, variance, and extremes) across Europe in winter and mean and extreme temperature in summer and winter, except for hot extremes over central/northern Europe in summer. However, internal variability significantly impacts the ability to determine scaling skill for precipitation indices, with a three-member ensemble found to be insufficient for identifying robust local scaling relationships in many cases.

This study suggests that, given limited computer resources, ensembles should be designed to prioritize the sampling of GCM uncertainty, using a reduced set of RCMs. Exceptions are found over the Alps and northeastern Europe in winter and central Europe in summer, where sampling multiple RCMs may be equally or more important for capturing uncertainty in local temperature or precipitation change. This reflects the significant role of local processes in these regions. Also, to determine the ensemble strategy in some cases, notably precipitation extremes in summer, better sampling of internal variability is needed.

Full access
Philip W. Mote, Myles R. Allen, Richard G. Jones, Sihan Li, Roberto Mera, David E. Rupp, Ahmed Salahuddin, and Dean Vickers

Abstract

Computing resources donated by volunteers have generated the first superensemble of regional climate model results, in which the Hadley Centre Regional Model, version 3P (HadRM3P), and Hadley Centre Atmosphere Model, version 3P (HadAM3P), were implemented for the western United States at 25-km resolution. Over 136,000 valid and complete 1-yr runs have been generated to date: about 126,000 for 1960–2009 using observed sea surface temperatures (SSTs) and 10,000 for 2030–49 using projected SSTs from a global model simulation. Ensemble members differ in initial conditions, model physics, and (potentially, for future runs) SSTs. This unprecedented confluence of high spatial resolution and large ensemble size allows high signal-to-noise ratio and more robust estimates of uncertainty. This paper describes the experiment, compares model output with observations, shows select results for climate change simulations, and gives examples of the strength of the large ensemble size.

Full access
Victoria A. Bell, Nicola Gedney, Alison L. Kay, Roderick N. B. Smith, Richard G. Jones, and Robert J. Moore

Abstract

River basin managers concerned with maintaining water supplies and mitigating flood risk in the face of climate change are taking outputs from climate models and using them in hydrological models for assessment purposes. While precipitation is the main output used, evaporation is attracting increasing attention because of its significance to the water balance of river basins. Climate models provide estimates of actual evaporation that are consistent with their simplified land surface schemes but do not naturally provide the estimates of potential evaporation (PE) commonly required as input to hydrological models. There are clear advantages in using PE estimates controlled by atmospheric forcings when using stand-alone hydrological models with integral soil-moisture accounting schemes. The atmosphere–land decoupling approximation that PE provides can prove to be of further benefit if it is possible to account for the effect of different, or changing, land cover on PE outside of the climate model. The methods explored here estimate Penman–Monteith PE from vegetated surfaces using outputs from climate models that have an embedded land surface scheme. The land surface scheme enables an examination of the dependence of canopy stomatal resistance on atmospheric composition, and the sensitivity of PE estimates to the choice of canopy resistance values under current and changing climates is demonstrated. The conclusions have practical value for climate change impact studies relating to flood, drought, and water management applications.

Full access
Friederike E. L. Otto, Luke J. Harrington, David Frame, Emily Boyd, Kristian Cedervall Lauta, Michael Wehner, Ben Clarke, Emmanuel Raju, Chad Boda, Mathias Hauser, Rachel A. James, and Richard G. Jones
Full access
Catherine A Senior, John H Marsham, Sègoléne Berthou, Laura E Burgin, Sonja S Folwell, Elizabeth J Kendon, Cornelia M Klein, Richard G Jones, Neha Mittal, David P Rowell, Lorenzo Tomassini, Thèo Vischel, Bernd Becker, Cathryn E Birch, Julia Crook, Andrew J Dougill, Declan L Finney, Richard J Graham, Neil C G Hart, Christopher D Jack, Lawrence S Jackson, Rachel James, Bettina Koelle, Herbert Misiani, Brenda Mwalukanga, Douglas J Parker, Rachel A Stratton, Christopher M Taylor, Simon O Tucker, Caroline M Wainwright, Richard Washington, and Martin R Willet

Abstract

Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly effects of explicit convection affect not only projected changes in rainfall extremes, dry-spells and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change mean that we can provide regional decision makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the UK Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international co-ordination of such computationally, and human-resource expensive simulations as effectively as possible.

Full access
Thomas Popp, Michaela I. Hegglin, Rainer Hollmann, Fabrice Ardhuin, Annett Bartsch, Ana Bastos, Victoria Bennett, Jacqueline Boutin, Carsten Brockmann, Michael Buchwitz, Emilio Chuvieco, Philippe Ciais, Wouter Dorigo, Darren Ghent, Richard Jones, Thomas Lavergne, Christopher J. Merchant, Benoit Meyssignac, Frank Paul, Shaun Quegan, Shubha Sathyendranath, Tracy Scanlon, Marc Schröder, Stefan G. H. Simis, and Ulrika Willén

Abstract

Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.

Full access
William J. Gutowski Jr., Raymond W. Arritt, Sho Kawazoe, David M. Flory, Eugene S. Takle, Sébastien Biner, Daniel Caya, Richard G. Jones, René Laprise, L. Ruby Leung, Linda O. Mearns, Wilfran Moufouma-Okia, Ana M. B. Nunes, Yun Qian, John O. Roads, Lisa C. Sloan, and Mark A. Snyder

Abstract

This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.

Full access
Paul J. DeMott, Ottmar Möhler, Olaf Stetzer, Gabor Vali, Zev Levin, Markus D. Petters, Masataka Murakami, Thomas Leisner, Ulrich Bundke, Holger Klein, Zamin A. Kanji, Richard Cotton, Hazel Jones, Stefan Benz, Maren Brinkmann, Daniel Rzesanke, Harald Saathoff, Mathieu Nicolet, Atsushi Saito, Bjorn Nillius, Heinz Bingemer, Jonathan Abbatt, Karin Ardon, Eli Ganor, Dimitrios G. Georgakopoulos, and Clive Saunders

Understanding cloud and precipitation responses to variations in atmospheric aerosols remains an important research topic for improving the prediction of climate. Knowledge is most uncertain, and the potential impact on climate is largest with regard to how aerosols impact ice formation in clouds. In this paper, we show that research on atmospheric ice nucleation, including the development of new measurement systems, is occurring at a renewed and historically unparalleled level. A historical perspective is provided on the methods and challenges of measuring ice nuclei, and the various factors that led to a lull in research efforts during a nearly 20-yr period centered about 30 yr ago. Workshops played a major role in defining critical needs for improving measurements at that time and helped to guide renewed efforts. Workshops were recently revived for evaluating present research progress. We argue that encouraging progress has been made in the consistency of measurements using the present generation of ice nucleation instruments. Through comparison to laboratory cloud simulations, these ice nuclei measurements have provided increased confidence in our ability to quantify primary ice formation by atmospheric aerosols.

Full access