Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Richard Olson x
  • All content x
Clear All Modify Search
Rex C. Wood, Richard K. Olson, and Andrew R. McFarland

Abstract

The air ejector filter sampler is a balloon-borne device designed to collect particulate matter from very large volumes (105 ft2) of stratospheric air at altitudes between 50,000 and 130,000 ft. This equipment utilize an ejector pump to pull air through 2 ft2 of Institute of Paper Chemistry (IPC) #1478 filter paper at rates on the order of 1000 cfm. Use of this unit has permitted an extension of the U.S. Atomic Energy Commission operational sampling program to higher attitudes than previously allowed by battery powered electro-mechanical systems. Performance of the sampler during a successful operational series conducted in 1965 by the U.S. Air Force at San Angelo, Texas, and Eielson AFB, Alaska, has confirmed pre-program estimates of system reliability.

Full access
Thomas J. Phillips, Gerald L. Potter, David L. Williamson, Richard T. Cederwall, James S. Boyle, Michael Fiorino, Justin J. Hnilo, Jerry G. Olson, Shaocheng Xie, and J. John Yio

To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands that the GCM parameterizations of unresolved processes, in particular, should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provided that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by a realistically initialized climate GCM, and the application of six hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be tested in the same framework.

To further this method for evaluating and analyzing parameterizations in climate GCMs, the U.S. Department of Energy is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM.

Full access
James Wilczak, Cathy Finley, Jeff Freedman, Joel Cline, Laura Bianco, Joseph Olson, Irina Djalalova, Lindsay Sheridan, Mark Ahlstrom, John Manobianco, John Zack, Jacob R. Carley, Stan Benjamin, Richard Coulter, Larry K. Berg, Jeffrey Mirocha, Kirk Clawson, Edward Natenberg, and Melinda Marquis

Abstract

The Wind Forecast Improvement Project (WFIP) is a public–private research program, the goal of which is to improve the accuracy of short-term (0–6 h) wind power forecasts for the wind energy industry. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that included the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models and, second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the United States (the upper Great Plains and Texas) and included 12 wind profiling radars, 12 sodars, several lidars and surface flux stations, 184 instrumented tall towers, and over 400 nacelle anemometers. Results demonstrate that a substantial reduction (12%–5% for forecast hours 1–12) in power RMSE was achieved from the combination of improved numerical weather prediction models and assimilation of new observations, equivalent to the previous decade’s worth of improvements found for low-level winds in NOAA/National Weather Service (NWS) operational weather forecast models. Data-denial experiments run over select periods of time demonstrate that up to a 6% improvement came from the new observations. Ensemble forecasts developed by the private sector partners also produced significant improvements in power production and ramp prediction. Based on the success of WFIP, DOE is planning follow-on field programs.

Full access
Irina V. Djalalova, Laura Bianco, Elena Akish, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Larry K. Berg, Aditya Choukulkar, Richard Coulter, Harinda J. S. Fernando, Eric Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, David D. Turner, and Sonia Wharton

Abstract

The second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast skill of numerical weather prediction (NWP) models in complex terrain, particularly beneficial for the wind energy industry. This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains (September 2011–August 2012). The RT&M was designed to explicitly measure the skill of NWP models at forecasting wind ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars, and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the modification to the model physical parameterizations, was finally investigated.

Restricted access
James M. Wilczak, Mark Stoelinga, Larry K. Berg, Justin Sharp, Caroline Draxl, Katherine McCaffrey, Robert M. Banta, Laura Bianco, Irina Djalalova, Julie K. Lundquist, Paytsar Muradyan, Aditya Choukulkar, Laura Leo, Timothy Bonin, Yelena Pichugina, Richard Eckman, Charles N. Long, Kathleen Lantz, Rochelle P. Worsnop, Jim Bickford, Nicola Bodini, Duli Chand, Andrew Clifton, Joel Cline, David R. Cook, Harindra J. S. Fernando, Katja Friedrich, Raghavendra Krishnamurthy, Melinda Marquis, Jim McCaa, Joseph B. Olson, Sebastian Otarola-Bustos, George Scott, William J. Shaw, Sonia Wharton, and Allen B. White

Abstract

The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.

Open access
Dennis Baldocchi, Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch. Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw U, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access