Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Richard Tinker x
  • Refine by Access: All Content x
Clear All Modify Search
Robert E. Livezey and Richard Tinker

Various aspects of the severe heat wave that affected the midwestern and eastern United States in mid-July 1995 and led to hundreds of heat-related deaths are examined. First, the event is placed in historical context through examination of relatively long records at several affected sites. Next, the origins of both the strong high pressure cell and the unusually large moisture content of the air mass are traced. This is followed by a brief summary that concludes with the suggestion that longer-term processes played minor roles at best in the event. Finally, microclimatic factors in the Chicago metropolitan area are considered for their role in exacerbating conditions in the city most severely affected by the heat wave.

Full access
Robert E. Livezey, Konstantin Y. Vinnikov, Marina M. Timofeyeva, Richard Tinker, and Huug M. van den Dool


WMO-recommended 30-yr normals are no longer generally useful for the design, planning, and decision-making purposes for which they were intended. They not only have little relevance to the future climate, but are often unrepresentative of the current climate. The reason for this is rapid global climate change over the last 30 yr that is likely to continue into the future. It is demonstrated that simple empirical alternatives already are available that not only produce reasonably accurate normals for the current climate but also often justify their extrapolation to several years into the future. This result is tied to the condition that recent trends in the climate are approximately linear or have a substantial linear component. This condition is generally satisfied for the U.S. climate-division data. One alternative [the optimal climate normal (OCN)] is multiyear averages that are not fixed at 30 yr like WMO normals are but rather are adapted climate record by climate record based on easily estimated characteristics of the records. The OCN works well except with very strong trends or longer extrapolations with more moderate trends. In these cases least squares linear trend fits to the period since the mid-1970s are viable alternatives. An even better alternative is the use of “hinge fit” normals, based on modeling the time dependence of large-scale climate change. Here, longer records can be exploited to stabilize estimates of modern trends. Related issues are the need to avoid arbitrary trend fitting and to account for trends in studies of ENSO impacts. Given these results, the authors recommend that (a) the WMO and national climate services address new policies for changing climate normals using the results here as a starting point and (b) NOAA initiate a program for improved estimates and forecasts of official U.S. normals, including operational implementation of a simple hybrid system that combines the advantages of both the OCN and the hinge fit.

Full access
Mark Svoboda, Doug LeComte, Mike Hayes, Richard Heim, Karin Gleason, Jim Angel, Brad Rippey, Rich Tinker, Mike Palecki, David Stooksbury, David Miskus, and Scott Stephens

The Drought Monitor was started in spring 1999 in response to a need for improved information about the status of drought across the United States. It serves as an example of interagency cooperation in a time of limited resources. The Drought Monitor process also illustrates the creative use of Internet technologies to disseminate authoritative information about drought and to receive regional and local input that is in turn incorporated into the product. This paper describes the Drought Monitor and the interactive process through which it is created.

Full access
Gerald D. Bell, Michael S. Halpert, Russell C. Schnell, R. Wayne Higgins, Jay Lawrimore, Vernon E. Kousky, Richard Tinker, Wasila Thiaw, Muthuvel Chelliah, and Anthony Artusa

The global climate during 1999 was impacted by Pacific cold episode (La Niña) conditions throughout the year, which resulted in regional precipitation and atmospheric circulation patterns across the Pacific Ocean and the Americas that are generally consistent with those observed during past cold episodes. The primary La Niña-related precipitation anomalies included 1) increased rainfall across Indonesia, and a nearly complete disappearance of rainfall across the east-central and eastern equatorial Pacific; 2) above-normal rains across northwestern and northern Australia; 3) increased monsoon rains across the Sahel region of western Africa; 4) above-average rains over southeastern Africa, 5) above-average rains over the Caribbean Sea and portions of Central America, and 6) below-average rains in southeastern South America.

The La Niña also contributed to persistent cyclonic circulation anomalies in the subtropics of both hemispheres, which flanked the area of suppressed convective activity over the eastern half of the equatorial Pacific. In the Northern Hemisphere this anomaly feature contributed to a pronounced westward retraction of the wintertime East Asian jet stream, which subsequently impacted precipitation and storm patterns across the eastern North Pacific and western North America. The La Niña-related pattern of tropical rainfall also contributed to a very persistent pattern of anticyclonic circulation anomalies in the middle latitude of both hemispheres, extending from the eastern Pacific across the Atlantic and Africa eastward to Australasia. This anomaly pattern was associated with an active Atlantic hurricane season, an inactive eastern North Pacific hurricane season, above-average rains in the African Sahel, and an overall amplification of the entire southeast Asian summer monsoon complex.

The active 1999 North Atlantic hurricane season featured 12 named storms, 8 of which became hurricanes, and 5 of which became intense hurricanes. The peak of activity during mid-August–October was accompanied by low vertical wind shear across the central and western Atlantic, along with both a favorable structure and location of the African easterly jet. In contrast, only 9 tropical storms formed over the eastern North Pacific during the year, making it one of the most inactive years for that region in the historical record. This relative inactivity was linked to a persistent pattern of high vertical wind shear that covered much of the main development region of the eastern North Pacific.

Other regional aspects of the short-term climate included: 1) above-average wintertime precipitation and increased storminess in the Pacific Northwest, United States; 2) above-average monsoonal rainfall across the southwestern United States; 3) drought over the northeastern quadrant of the United States during April–mid-August; 4) hurricane-related flooding in the Carolinas during September; 5) drought over the south-central United States during July–November; 6) below-average rainfall in the Hawaiian Islands throughout the year, with long-term dryness affecting some parts of the islands since October 1997; 7) a continuation of long-term drought conditions in southeastern Australia, with most of Victoria experiencing below-average rainfall since late 1996; and 8) above-average rainfall in central China during April–August.

Global annual mean surface temperatures during 1999 for land and marine areas were 0.41°C above the 1880–1998 long-term mean, making it the fifth warmest year in the record. However, significant cooling was evident in the Tropics during 1999 in association with a continuation of La Niña conditions. In contrast, temperatures in both the Northern Hemisphere and Southern Hemisphere extratropics were the second warmest in the historical record during 1999, and only slightly below the record 1998 anomalies.

The areal extent of the Antarctic ozone hole remained near record levels during 1999. The ozone hole also lasted longer than has been observed in past years.

Full access