Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Richard W. Anthony x
  • All content x
Clear All Modify Search
Richard W. Anthony

Abstract

No abstract available.

Full access
Richard W. Anthony and Preston W. Leftwich Jr.

Abstract

Trends of tornado and severe thunderstorm watch verification for the period 1967–1990 are presented. Over the past 10 years the annual number of reported severe thunderstorm events has increased substantially. In comparison, the number of tornado events reported has remained relatively constant from year to year. During the period 1967 to 1990, the percentage of watches verifying has increased from 45% to 85%, while the probability of detection (POD) of severe local storm events has increased from about 0.35 to 0.50. Recent results show that the number of severe thunderstorm watches has steadily increased since 1985, the size of watches has slowly decreased, and lead time has slightly decreased.

Yearly fluctuations in tornado watch verification statistics appear to be best related to the number of outbreak tornadoes. Data suggest the Severe Local Storm Unit (SELS) performance in forecasting outbreak episodes and strong/violent tornadoes is improving at a faster rate than in forecasting isolated tornadoes. Improving trends in severe thunderstorm watch verification for the period 1967 to 1990 are also documented. In general, the results suggest a gradual improvement in forecast performance since the late 1960s. Several factors that impact the verification scores are also identified and discussed.

Full access
Anthony Arguez, Imke Durre, Scott Applequist, Russell S. Vose, Michael F. Squires, Xungang Yin, Richard R. Heim Jr., and Timothy W. Owen

The National Oceanic and Atmospheric Administration (NOAA) released the 1981–2010 U.S. Climate Normals in July 2011, representing the latest decadal installment of this long-standing product line. Climatic averages (and other statistics) of temperature, precipitation, snowfall, and numerous derived quantities were calculated for ~9,800 stations operated by the U.S. National Weather Service (NWS). They include estimated normals, or “quasi normals,” for approximately 2,000 active short-record stations such as those in the U.S. Climate Reference Network. The 1981–2010 installment features several new products and methodological enhancements: 1) state-of-the-art temperature homogenization at the monthly scale, 2) extensive utilization of quality-controlled daily climate data, 3) new statistical approaches for calculating daily temperature normals and heating and cooling degree days, and 4) a comprehensive suite of precipitation, snowfall, and snow depth statistics. This paper provides a general overview of this new suite of climate normals products.

Full access
Thomas L. Delworth, Anthony J. Broccoli, Anthony Rosati, Ronald J. Stouffer, V. Balaji, John A. Beesley, William F. Cooke, Keith W. Dixon, John Dunne, K. A. Dunne, Jeffrey W. Durachta, Kirsten L. Findell, Paul Ginoux, Anand Gnanadesikan, C. T. Gordon, Stephen M. Griffies, Rich Gudgel, Matthew J. Harrison, Isaac M. Held, Richard S. Hemler, Larry W. Horowitz, Stephen A. Klein, Thomas R. Knutson, Paul J. Kushner, Amy R. Langenhorst, Hyun-Chul Lee, Shian-Jiann Lin, Jian Lu, Sergey L. Malyshev, P. C. D. Milly, V. Ramaswamy, Joellen Russell, M. Daniel Schwarzkopf, Elena Shevliakova, Joseph J. Sirutis, Michael J. Spelman, William F. Stern, Michael Winton, Andrew T. Wittenberg, Bruce Wyman, Fanrong Zeng, and Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access
Rezaul Mahmood, Roger A. Pielke Sr., Kenneth G. Hubbard, Dev Niyogi, Gordon Bonan, Peter Lawrence, Richard McNider, Clive McAlpine, Andres Etter, Samuel Gameda, Budong Qian, Andrew Carleton, Adriana Beltran-Przekurat, Thomas Chase, Arturo I. Quintanar, Jimmy O. Adegoke, Sajith Vezhapparambu, Glen Conner, Salvi Asefi, Elif Sertel, David R. Legates, Yuling Wu, Robert Hale, Oliver W. Frauenfeld, Anthony Watts, Marshall Shepherd, Chandana Mitra, Valentine G. Anantharaj, Souleymane Fall, Robert Lund, Anna Treviño, Peter Blanken, Jinyang Du, Hsin-I Chang, Ronnie Leeper, Udaysankar S. Nair, Scott Dobler, Ravinesh Deo, and Jozef Syktus
Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access