Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Rob Allan x
  • Refine by Access: All Content x
Clear All Modify Search
Rob Allan
and
Tara Ansell

Abstract

An upgraded version of the Hadley Centre’s monthly historical mean sea level pressure (MSLP) dataset (HadSLP2) is presented. HadSLP2 covers the period from 1850 to date, and is based on numerous terrestrial and marine data compilations. Each terrestrial pressure series used in HadSLP2 underwent a series of quality control tests, and erroneous or suspect values were either corrected, where possible, or removed. Marine observations from the International Comprehensive Ocean Atmosphere Data Set were quality controlled (assessed against climatology and near neighbors) and then gridded. The final gridded form of HadSLP2 was created by blending together the processed terrestrial and gridded marine MSLP data. MSLP fields were made spatially complete using reduced-space optimal interpolation. Gridpoint error estimates were also produced.

HadSLP2 was found to have generally stronger subtropical anticyclones and higher-latitude features across the Northern Hemisphere than an earlier product (HadSLP1). During the austral winter, however, it appears that the pressures in the southern Atlantic and Indian Ocean midlatitude regions are too high; this is seen in comparisons with both HadSLP1 and the 40-yr ECMWF Re-Analysis (ERA-40). Over regions of high altitude, HadSLP2 and ERA-40 showed consistent differences suggestive of potential biases in the reanalysis model, though the region over the Himalayas in HadSLP2 is biased compared with HadSLP1 and improvements are required in this region. Consistent differences were also observed in regions of sparse data, particularly over the higher latitudes of the Southern Ocean and in the southeastern Pacific. Unlike the earlier HadSLP1 product, error estimates are available with HadSLP2 to guide the user in these regions of low confidence.

An evaluation of major phenomena in the climate system using HadSLP2 provided further validation of the dataset. Important climatic features/indices such as the North Atlantic Oscillation, Arctic Oscillation, North Pacific index, Southern Oscillation index, Trans-Polar index, Antarctic Oscillation, Antarctic Circumpolar Wave, East Asian Summer Monsoon index, and the Siberian High index have all been resolved in HadSLP2, with extensions back to the mid-nineteenth century.

Full access
Yuyu Ren
,
Guoyu Ren
,
Rob Allan
,
Jiao Li
,
Guowei Yang
, and
Panfeng Zhang

Abstract

Instrumental data from the pre–Industrial Revolution period are important to ­understand climate change. In this paper, the observations made by the French missionary J. Amiot in present-day central Beijing during 1757–62 were processed and analyzed. The observations represent the earliest continuous dataset of meteorological records found in China that have been digitized recently. Comparisons between the Amiot annual temperature range and extreme values with modern observations showed that the observations were read at approximately 0800 and 1500 local solar time (LST) in a well-ventilated outdoor site. The daily maximum, minimum, and mean temperatures (T-max, T-min, and T-mean, respectively) during 1757–62 were determined by examining the relationship between temperature at 0800 and 1500 LST and T-max, T-min, and T-mean in modern reference series. Nearly 260 years ago, Beijing’s climate was typical of an inland temperate monsoon zone with annual T-mean, annual mean T-max, and annual mean T-min being 11.5°, 17.8°, and 6.1°C, respectively; further, the temperatures did not vary considerably from the 1951–1980 temperatures, but differed evidently compared to relatively recent decades (1981–2020). The difference was larger than the magnitudes of global and regional temperature changes. Thus, climate warming since the pre–Industrial Revolution period in the urban areas of Beijing has dominantly occurred over the last four decades. Uncertainties related to the thermometer and observational conditions 260 years ago and the interpolation method used have also been discussed in this paper.

Free access
Rob Allan
,
Philip Brohan
,
Gilbert P. Compo
,
Roger Stone
,
Juerg Luterbacher
, and
Stefan Brönnimann

No abstract available.

Full access
Edward Hanna
,
John Cappelen
,
Rob Allan
,
Trausti Jónsson
,
Frank Le Blancq
,
Tim Lillington
, and
Kieran Hickey

Abstract

The authors present initial results of a new pan-European and international storminess since 1800 as interpreted from European and North Atlantic barometric pressure variability (SENABAR) project. This first stage analyzes results of a new daily pressure variability index, dp(abs)24, from long-running meteorological stations in Denmark, the Faroe Islands, Greenland, Iceland, the United Kingdom, and Ireland, some with data from as far back as the 1830s. It is shown that dp(abs)24 is significantly related to wind speed and is therefore a good measure of Atlantic and Northwest European storminess and climatic variations. The authors investigate the temporal and spatial consistency of dp(abs)24, the connection between annual and seasonal dp(abs)24 and the North Atlantic Oscillation Index (NAOI), as well as dp(abs)24 links with historical storm records. The results show periods of relatively high dp(abs)24 and enhanced storminess around 1900 and the early to mid-1990s, and a relatively quiescent period from about 1930 to the early 1960s, in keeping with earlier studies. There is little evidence that the mid- to late nineteenth century was less stormy than the present, and there is no sign of a sustained enhanced storminess signal associated with “global warming.” The results mark the first step of a project intending to improve on earlier work by linking barometric pressure data from a wide network of stations with new gridded pressure and reanalysis datasets, GCMs, and the NAOI. This work aims to provide much improved spatial and temporal coverage of changes in European, Atlantic, and global storminess.

Full access
Rob Allan
,
Roger Stone
,
Joëlle Gergis
,
Zak Baillie
,
Hanna Heidemann
,
Nick Caputi
,
Rosanne D’Arrigo
, and
Christa Pudmenzky

Abstract

A “protracted” El Niño episode occurred from March–April 2018 to April–May 2020. It was manifested by the interlinked Indo-Pacific influences of two components of El Niño phases. Positive Indian Ocean dipoles (IODs) in 2018 and 2019 suppressed the formation of northwest cloud bands and southern Australia rainfall, and a persistent teleconnection, with enhanced convection generated by positive Niño-4 region sea surface temperature (SST) anomalies and strong subsidence over eastern Australia, exacerbated this Australian drought. As with “classical” El Niño–Southern Oscillation (ENSO) events, which usually last 12–18 months, protracted ENSO episodes, which last for more than 2 yr, show a similar pattern of impacts on society and the environment across the Indo-Pacific domain, and often extend globally. The second half of this study puts the impact of the 2018–20 protracted El Niño episode on both the Australian terrestrial agricultural and marine ecophysiological environments in a broader context. These impacts are often modulated not only by the direct effects of ENSO events and episodes, but by interrelated local to region ocean–atmosphere interactions and synoptic weather patterns. Even though the indices of protracted ENSO episodes are often weaker in magnitude than those of major classical ENSO events, it is the longer duration of the former that poses its own set of problems. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes, particularly when the mid-2020 to current 2022 period has been experiencing a major protracted La Niña episode with near-global impacts.

Significance Statement

The major 2018–20 Australian drought and its terrestrial and marine impacts were caused by a “protracted” El Niño episode, exacerbated by global warming. Indo-Pacific ocean–atmosphere interactions resulted in a persistent positive western Pacific Niño-4 sea surface temperature anomaly during the period 2018–20 and positive Indian Ocean dipoles (IODs) in 2018 and 2019. These suppressed rainfall across eastern Australia and limited northwest Australian cloud band rainfall across southern Australia. Australian agricultural and ecophysiological impacts caused by protracted El Niño–Southern Oscillation (ENSO) episodes permeate, overstress, and expose society, infrastructure, and livelihoods to longer temporal-scale pressures than those experienced during shorter “classical” ENSO events. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes.

Restricted access
Zoë Thomas
,
Chris Turney
,
Rob Allan
,
Steve Colwell
,
Gail Kelly
,
David Lister
,
Philip Jones
,
Mark Beswick
,
Lisa Alexander
,
Tanya Lippmann
,
Nicholas Herold
, and
Richard Jones

Abstract

The sparse nature of observational records across the mid- to high latitudes of the Southern Hemisphere limits the ability to place late-twentieth-century environmental changes in the context of long-term (multidecadal and centennial) variability. Historical records from subantarctic islands offer considerable potential for developing highly resolved records of change. In 1905, a whaling and meteorological station was established at Grytviken on subantarctic South Georgia in the South Atlantic (54°S, 36°W), providing near-continuous daily observations through to present day. This paper reports a new, daily observational record of temperature and precipitation from Grytviken, which is compared to regional datasets and historical reanalysis. The authors find a shift toward increasingly warmer daytime extremes commencing from the mid-twentieth century and accompanied by warmer nighttime temperatures, with an average rate of temperature rise of 0.13°C decade−1 over the period 1907–2016 (p < 0.0001). Analysis of these data and reanalysis products suggest a change of pervasive synoptic conditions across the mid- to high latitudes since the mid-twentieth century, characterized by stronger westerly airflow and associated warm föhn winds across South Georgia. This rapid rate of warming and associated declining habitat suitability has important negative implications for biodiversity, including the survival of key marine biota in the region.

Full access
Philip Brohan
,
Rob Allan
,
J. Eric Freeman
,
Anne M. Waple
,
Dennis Wheeler
,
Clive Wilkinson
, and
Scott Woodruff

Weather observations are vital for climate change monitoring and prediction. For the world's oceans, there are many meteorological and oceanographic observations available back to the mid-twentieth century, but coverage is limited in earlier periods, and particularly also during the two world wars. Before 1850 there are currently very few instrumental observations available. Consequently, detailed observational estimates of surface climate change can be made only back to the mid-nineteenth century. To improve and extend this early coverage, scientists need more observations from these periods. Fortunately, many such observations exist in logbooks, reports, and other paper records, but their inclusion in the climatic datasets requires that these paper records be abstracted from the world's archives, digitized into an electronic form, and blended into existing climate databases.

As a first step in this direction, selected Royal Navy logbooks from the period of 1938–47, kept in the U.K. National Archives, have been photographed and digitized. These have provided more than 1,500,000 new observations for this period, and a preliminary analysis has shown significant improvements to the record of climate change in the mid-twentieth century.

Full access
Adam A. Scaife
,
Elizabeth Good
,
Ying Sun
,
Zhongwei Yan
,
Nick Dunstone
,
Hong-Li Ren
,
Chaofan Li
,
Riyu Lu
,
Peili Wu
,
Zongjian Ke
,
Zhuguo Ma
,
Kalli Furtado
,
Tongwen Wu
,
Tianjun Zhou
,
Tyrone Dunbar
,
Chris Hewitt
,
Nicola Golding
,
Peiqun Zhang
,
Rob Allan
,
Kirstine Dale
,
Fraser C. Lott
,
Peter A. Stott
,
Sean Milton
,
Lianchun Song
, and
Stephen Belcher

Abstract

We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

Full access
Peter W. Thorne
,
Kate M. Willett
,
Rob J. Allan
,
Stephan Bojinski
,
John R. Christy
,
Nigel Fox
,
Simon Gilbert
,
Ian Jolliffe
,
John J. Kennedy
,
Elizabeth Kent
,
Albert Klein Tank
,
Jay Lawrimore
,
David E. Parker
,
Nick Rayner
,
Adrian Simmons
,
Lianchun Song
,
Peter A. Stott
, and
Blair Trewin

No abstract available.

Full access
Stefan Brönnimann
,
Rob Allan
,
Christopher Atkinson
,
Roberto Buizza
,
Olga Bulygina
,
Per Dahlgren
,
Dick Dee
,
Robert Dunn
,
Pedro Gomes
,
Viju O. John
,
Sylvie Jourdain
,
Leopold Haimberger
,
Hans Hersbach
,
John Kennedy
,
Paul Poli
,
Jouni Pulliainen
,
Nick Rayner
,
Roger Saunders
,
Jörg Schulz
,
Alexander Sterin
,
Alexander Stickler
,
Holly Titchner
,
Maria Antonia Valente
,
Clara Ventura
, and
Clive Wilkinson

Abstract

Global dynamical reanalyses of the atmosphere and ocean fundamentally rely on observations, not just for the assimilation (i.e., for the definition of the state of the Earth system components) but also in many other steps along the production chain. Observations are used to constrain the model boundary conditions, for the calibration or uncertainty determination of other observations, and for the evaluation of data products. This requires major efforts, including data rescue (for historical observations), data management (including metadatabases), compilation and quality control, and error estimation. The work on observations ideally occurs one cycle ahead of the generation cycle of reanalyses, allowing the reanalyses to make full use of it. In this paper we describe the activities within ERA-CLIM2, which range from surface, upper-air, and Southern Ocean data rescue to satellite data recalibration and from the generation of snow-cover products to the development of a global station data metadatabase. The project has not produced new data collections. Rather, the data generated has fed into global repositories and will serve future reanalysis projects. The continuation of this effort is first contingent upon the organization of data rescue and also upon a series of targeted research activities to address newly identified in situ and satellite records.

Open access