Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Robert A. Cohen x
  • Refine by Access: All Content x
Clear All Modify Search
Robert A. Cohen and David M. Schultz
Full access
Robert A. Cohen and Carl W. Kreitzberg

Abstract

Distinct airstreams, separated by sharp boundaries, are present in numerical weather simulations and can be used to identify characteristic structures in baroclinic storms. To allow objective comparisons between different analyses, a rigorous treatment of airstream boundaries is performed based upon a numerical procedure in which the uncertainty of individual trajectory paths is related to the strength of an airstream boundary, as defined and quantified herein. The properties of the procedure are then investigated via application to a numerical simulation of the ERICA IOP 4 storm. The work not only provides the necessary framework within which future analyses of airstreams can be interpreted but also provides insights into quantitative properties of atmospheric flows.

Full access
Robert A. Cohen and Carl W. Kreitzberg

The impact of atmospheric tides on surface pressure is studied by analyzing observations from the drifting-buoy network in the northwest Atlantic Ocean in winter 1988/89. These small, relatively inexpensive buoys, deployed for the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA), reported 10-min averages of air pressure, temperature, and sea surface temperature through satellites. Tidal oscillations are evident within the pressure variations and these tidal variations can be extracted and analyzed because they have a known constant period. The analyzed tides are compared with past observations and the similarities and differences are discussed. Many of the differences are attributed to the absence of local forcing in the homogeneous ocean environment, suggesting that the global-scale tide is being represented well. In this context, the observed variations agree well with what is expected, which demonstrates that the ability of the buoys to measure temporal changes is, on average, quite good. In addition, though the spatial gradients of tidal surface pressure variations at sea are negligible for most purposes, the magnitude of the temporal pressure variations are as large as 1 mb (3 h)−1, which is significant compared to the 3 mb (3 h)−1 indicative of rapid storm development. The different treatment of tide-producing mechanisms in different numerical prediction models may also complicate inter-comparison of pressure changes over a few hours in global models versus regional models.

Full access
Robert A. Cohen and David M. Schultz

Abstract

Although a kinematic framework for diagnosing frontogenesis exists in the form of the Petterssen frontogenesis function and its vector generalization, a similar framework for diagnosing airstream boundaries (e.g., drylines, lee troughs) has not been constructed. This paper presents such a framework, beginning with a kinematic expression for the rate of change of the separation vector between two adjacent air parcels. The maximum growth rate of the separation vector is called the instantaneous dilatation rate and its orientation is called the axis of dilatation. Similarly, a maximum decay rate is called the instantaneous contraction rate and its orientation is called the axis of contraction. These expressions are related to the vector frontogenesis function, in that the growth rate of the separation vector corresponds with the scalar frontogenesis function, and the rotation rate of the separation vector corresponds with the rotational component of the vector frontogenesis function.

Because vorticity can rotate air-parcel pairs out of regions of deformation, the instantaneous dilatation and contraction rates and axes may not be appropriate diagnostics of airstream boundaries for fluid flows in general. Rather, the growth rate and orientation of an airstream boundary may correspond better to the so-called asymptotic contraction rate and the asymptotic axis of dilatation, respectively. Expressions for the asymptotic dilatation and contraction rates, as well as their orientations, the asymptotic dilatation and contraction axes, are derived. The asymptotic dilatation rate is related to the Lyapunov exponent for the flow. In addition, a fluid-trapping diagnostic is derived to distinguish among adjacent parcels being pulled apart, being pushed together, or trapped in an eddy. Finally, these diagnostics are applied to simple, idealized, steady-state flows and a nonsteady idealized vortex in nondivergent, diffluent flow to show their utility for determining the character of air-parcel trajectories and airstream boundaries.

Full access
Robert M. Graham, Lana Cohen, Nicole Ritzhaupt, Benjamin Segger, Rune G. Graversen, Annette Rinke, Von P. Walden, Mats A. Granskog, and Stephen R. Hudson

Abstract

This study evaluates the performance of six atmospheric reanalyses (ERA-Interim, ERA5, JRA-55, CFSv2, MERRA-2, and ASRv2) over Arctic sea ice from winter to early summer. The reanalyses are evaluated using observations from the Norwegian Young Sea Ice campaign (N-ICE2015), a 5-month ice drift in pack ice north of Svalbard. N-ICE2015 observations include surface meteorology, vertical profiles from radiosondes, as well as radiative and turbulent heat fluxes. The reanalyses simulate surface analysis variables well throughout the campaign, but have difficulties with most forecast variables. Wintertime (January–March) correlation coefficients between the reanalyses and observations are above 0.90 for the surface pressure, 2-m temperature, total column water vapor, and downward longwave flux. However, all reanalyses have a positive wintertime 2-m temperature bias, ranging from 1° to 4°C, and negative (i.e., upward) net longwave bias of 3–19 W m−2. These biases are associated with poorly represented surface inversions and are largest during cold-stable periods. Notably, the recent ERA5 and ASRv2 datasets have some of the largest temperature and net longwave biases, respectively. During spring (April–May), reanalyses fail to simulate observed persistent cloud layers. Therefore they overestimate the net shortwave flux (5–79 W m−2) and underestimate the net longwave flux (8–38 W m−2). Promisingly, ERA5 provides the best estimates of downward radiative fluxes in spring and summer, suggesting improved forecasting of Arctic cloud cover. All reanalyses exhibit large negative (upward) residual heat flux biases during winter, and positive (downward) biases during summer. Turbulent heat fluxes over sea ice are simulated poorly in all seasons.

Full access
Philip A. Feiner, William H. Brune, David O. Miller, Li Zhang, Ronald C. Cohen, Paul S. Romer, Allen H. Goldstein, Frank N. Keutsch, Kate M. Skog, Paul O. Wennberg, Tran B. Nguyen, Alex P. Teng, Joost DeGouw, Abigail Koss, Robert J. Wild, Steven S. Brown, Alex Guenther, Eric Edgerton, Karsten Baumann, and Juliane L. Fry

Abstract

The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.

Full access