Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert A. Oehlkers x
  • Refine by Access: All Content x
Clear All Modify Search
Nadav Levanon, Juris Afanasjevs, Robert A. Oehlkers, and Verner E. Suomi


The pressure sensor for the Tropical Wind Energy conversion and Reference Level Experiment (TWERLE) is described. Key design features of the sensor are: capacitive coupling, reference at midrange, up-down counting, passive oven, storage at flight pressure and prelaunch calibration. Sensor specifications are given which are based on the production results of 440 units. Drift, as estimated from simulated life tests, is 1 mb per 6 months. The overall weight of the sensor, including thermal package, is 180 g.

Full access
Nadav Levanon, Robert A. Oehlkers, Scott D. Ellington, William J. Massman, and Verner E. Suomi


This paper presents measured data related to the question of how constant are “constant-level” balloons. The simultaneous use of two balloon-borne instruments, a radio altimeter and a pressure sensor, operating on entirely different principles, help to distinguish between sensor noise and true balloon altitude fluctuation. Four types of superpressure balloon altitude changes at the level of 150 mb were observed: (i) neutral buoyancy oscillations (NBO) with a period of about 200 sec and with peak-to-peak amplitude of up to 50 m, (ii) short-term oscillations with a period of ∼1.2 hr and peak-to-peak amplitudes of up to 80 m, (iii) diurnal half-cycle (day observations only) with an amplitude of up to 150 m, and (iv) possible trends of up to 120 m per day.

The data were obtained during four superpressure-balloon 150-mb flights in the Southern Hemisphere. These balloon flights were part of a test program for the TWERL Experiment. NCAR's GHOST balloons and navigation system were used, with the final version of the TWERLE radio altimeter and an early version of the pressure sensor.

The data are presented with a discussion of their limitations, mainly aliasing, ambiguity, and the absolute accuracy of the pressure sensor. A theoretical analysis of the NBO, with a spectrum analysis of supporting ground radar data, are given in the Appendix.

Full access