Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Robert C. Cifelli x
  • Refine by Access: All Content x
Clear All Modify Search
Sergey Y. Matrosov
,
Patrick C. Kennedy
, and
Robert Cifelli

Abstract

Correcting observed polarimetric radar variables for attenuation and differential attenuation effects in rain is important for meteorological applications involving measurements at attenuating frequencies such as those at X band. The results of estimating the coefficients in the correction-scheme relations from dual-wavelength polarimetric radar measurements of rainfall involving attenuating and nonattenuating frequencies are described. Such coefficients found directly from measurements are essentially free from different assumptions about drop shapes, drop size distributions, and/or relations between different radar variables that are typically used in many attenuation and differential attenuation correction schemes. Experimentally based estimates derived using dual-wavelength radar measurements conducted during a project in northern Colorado indicate values of the coefficients in the attenuation–differential phase quasi-linear relations at X band in the approximate range of 0.20–0.31 dB deg−1. The corresponding coefficients in the differential attenuation–differential phase relations are in the range of 0.052–0.065 dB deg−1.

Full access
Deepak K. Rajopadhyaya
,
Susan K. Avery
,
Peter T. May
, and
Robert C. Cifelli

Abstract

The advantages and disadvantages of single-frequency (50 MHz) and dual-frequency (50 and 915 MHz) wind profiler drop size distribution retrievals are discussed by comparing retrievals of median volume drop diameter and rain rates. Simulated data, as well as observational data, show that the median volume diameter estimated from the single-frequency technique is biased higher than what is retrieved using the dual-frequency technique. This result is due to the strong 50-MHz Bragg scatter signal that masks the small drop (low fall velocity) part of the precipitation spectrum. The error in the estimation of the median volume diameter increases markedly with increasing vertical air motion spectral width. The error in the estimation of the median volume diameter is minimum for median volume diameters ranging from 0.5 to about 2.5 mm for the dual-frequency technique and 1.2 to about 2.5 mm for the single-frequency technique. The comparison of retrieved rain rates with rain gauge data shows a very good agreement for both techniques, but it was not always possible to retrieve precipitation information using the single-frequency technique.

Full access
Walter A. Petersen
,
Robert C. Cifelli
,
Steven A. Rutledge
,
Brad S. Ferrier
, and
Bradley F. Smull

Shipborne Doppler radar operations were conducted over the western Pacific warm pool during TOGA COARE using the Massachusetts Institute of Technology and NOAA TOGA C-band Doppler radars. Occasionally the ships carrying these radars were brought to within 50 km of each other to conduct coordinated dual-Doppler scanning. The dual-Doppler operations were considered a test of the logistical and engineering constraints associated with establishing a seagoing dual-Doppler configuration. A very successful dual-Doppler data collection period took place on 9 February 1993 when an oceanic squall line developed, intensified, and propagated through the shipborne dual-Doppler lobes. Later on the same day, NOAA P-3 aircraft sampled a more intense squall line located approximately 400 km to the southeast of the shipborne operations. This study provides an overview of the shipborne dual-Doppler operations, followed by a comparison of the kinematic and precipitation structures of the convective systems sampled by the ships and aircraft. Special emphasis is placed on interpretation of the results relative to the electrical characteristics of each system.

Soundings taken in the vicinity of the ship and aircraft cases exhibited similar thermodynamic instability and shear. Yet Doppler radar analyses suggest that the aircraft case exhibited a larger degree of low-level forcing, stronger updrafts, more precipitation mass in the mixed-phase region of the clouds, and a relatively higher degree of electrification as evidenced by lightning observations. Conversely, convection in the ship case, while producing maximum cloud-top heights of 16 km, was associated with relatively weaker low-level forcing, weaker vertical development above the −5°C level, moderate electric fields at the surface, and little detectable lightning. Differences in the kinematic and precipitation structures were further manifested in composite vertical profiles of mean convective precipitation and vertical motion. When considered relative to the electrical properties of the two systems, the results provide further circumstantial evidence to support previously hypothesized vertical velocity and radar reflectivity thresholds that must be exceeded in the 0° to −20°C regions of tropical cumulonimbi prior to the occurrence of lightning.

Full access
Deepak K. Rajopadhyaya
,
Peter T. May
,
Robert C. Cifelli
,
Susan K. Avery
,
Christopher R. Willams
,
Warner L. Ecklund
, and
Kenneth S. Gage

Abstract

Two different frequency radar wind profilers (920 and 50 MHz) were used to retrieve rain rates from a long-lasting rainfall event observed near Darwin, Northern Territory, Australia, during the 1993–94 wet season. In this technique, 50-MHz data are used to derive the vertical air motion parameters (vertical velocity and spectral width); the 920-MHz data are then used to obtain the precipitation characteristics with the vertical air motion corrections. A comparison of the retrieved rain rates with rain gauge measurements shows excellent agreement. A detailed examination of the mean vertical velocity and spectral width corrections in the rain retrieval shows that the error due to an uncorrected mean vertical velocity can be as large as 100%, and the error for an uncorrected spectral width was about 10% for the range of mean vertical velocity and spectral width considered. There was a strong functional dependence between the retrieved mean vertical velocity and percentage difference between observed and retrieved rain rates with and without vertical air motion corrections. The corresponding functional dependence with and without the spectral width corrections was small but significant. An uncorrected upward mean vertical velocity overestimates rain rates, whereas an uncorrected downward mean vertical velocity underestimates rain rates. Uncorrected spectral width estimates have a tendency to overestimate rain rates. There are additional errors in the width correction because of antenna beam mismatching. A method is discussed to quantitatively evaluate this effect, and it is shown to be relatively small compared to the first-order mean vertical velocity correction.

Full access
Sergey Y. Matrosov
,
Robert Cifelli
,
Patrick C. Kennedy
,
Steven W. Nesbitt
,
Steven A. Rutledge
,
V. N. Bringi
, and
Brooks E. Martner

Abstract

A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, K DP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable K DP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, K DP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Z eh, and differential reflectivity, Z DR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Z eh starting approximately at Z eh > 40 dBZ, and for Z DR when the mass-weighted drop diameter, Dm , exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent K DP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Z eh > ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the K DP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, Z DR measurements at both radar frequency bands were in good agreement with each other for Dm < 2 mm, which approximately corresponds to Z DR ≈ 1.6 dB. The Z DR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.

Full access
Randall M. Dole
,
J. Ryan Spackman
,
Matthew Newman
,
Gilbert P. Compo
,
Catherine A. Smith
,
Leslie M. Hartten
,
Joseph J. Barsugli
,
Robert S. Webb
,
Martin P. Hoerling
,
Robert Cifelli
,
Klaus Wolter
,
Christopher D. Barnet
,
Maria Gehne
,
Ronald Gelaro
,
George N. Kiladis
,
Scott Abbott
,
Elena Akish
,
John Albers
,
John M. Brown
,
Christopher J. Cox
,
Lisa Darby
,
Gijs de Boer
,
Barbara DeLuisi
,
Juliana Dias
,
Jason Dunion
,
Jon Eischeid
,
Christopher Fairall
,
Antonia Gambacorta
,
Brian K. Gorton
,
Andrew Hoell
,
Janet Intrieri
,
Darren Jackson
,
Paul E. Johnston
,
Richard Lataitis
,
Kelly M. Mahoney
,
Katherine McCaffrey
,
H. Alex McColl
,
Michael J. Mueller
,
Donald Murray
,
Paul J. Neiman
,
William Otto
,
Ola Persson
,
Xiao-Wei Quan
,
Imtiaz Rangwala
,
Andrea J. Ray
,
David Reynolds
,
Emily Riley Dellaripa
,
Karen Rosenlof
,
Naoko Sakaeda
,
Prashant D. Sardeshmukh
,
Laura C. Slivinski
,
Lesley Smith
,
Amy Solomon
,
Dustin Swales
,
Stefan Tulich
,
Allen White
,
Gary Wick
,
Matthew G. Winterkorn
,
Daniel E. Wolfe
, and
Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Full access