Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Robert C. J. Wills x
  • All content x
Clear All Modify Search
Robert C. J. Wills and Tapio Schneider

Abstract

Orographic stationary Rossby waves are an important influence on the large-scale circulation of the atmosphere, especially in Northern Hemisphere winter. Changes in stationary waves with global warming have the potential to modify patterns of surface temperature and precipitation. This paper presents an analysis of the forcing of stationary waves by midlatitude orography across a wide range of climates in a moist idealized GCM, where latent heating and transient eddies are allowed to feed back on the stationary-eddy dynamics. The stationary-eddy amplitude depends to leading order on the surface winds impinging on the orography, resulting in different climate change responses for mountains at different latitudes. Latent heating is found to damp orographic stationary waves, whereas transient eddies are found to reinforce them. As the climate warms, the damping by latent heating becomes more effective while the reinforcement by transient eddies becomes less effective, leading to an overall reduction in orographic stationary wave amplitude. These effects overwhelm the influences of a reduced meridional temperature gradient and increased dry static stability, both of which increase the sensitivity of the free troposphere to orographic forcing. Together with a reduction in the midlatitude meridional temperature gradient, the weakening of orographic stationary waves leads to reduced zonal asymmetry of temperature and net precipitation in warm, moist climates. While circulation changes in this idealized model cannot be expected to agree quantitatively with changes in the real world, the key physical processes identified are broadly relevant.

Full access
Robert C. J. Wills, Xavier J. Levine, and Tapio Schneider
Free access
Robert C. Wills, Xavier J. Levine, and Tapio Schneider

Abstract

The weakening of tropical overturning circulations is a robust response to global warming in climate models and observations. However, there remain open questions on the causes of this change and the extent to which this weakening affects individual circulation features such as the Walker circulation. The study presents idealized GCM simulations of a Walker circulation forced by prescribed ocean heat flux convergence in a slab ocean, where the longwave opacity of the atmosphere is varied to simulate a wide range of climates. The weakening of the Walker circulation with warming results from an increase in gross moist stability (GMS), a measure of the tropospheric moist static energy (MSE) stratification, which provides an effective static stability for tropical circulations. Baroclinic mode theory is used to determine changes in GMS in terms of the tropical-mean profiles of temperature and MSE. The GMS increases with warming, owing primarily to the rise in tropopause height, decreasing the sensitivity of the Walker circulation to zonally anomalous net energy input. In the absence of large changes in net energy input, this results in a rapid weakening of the Walker circulation with global warming.

Full access
Johan Nilsson, David Ferreira, Tapio Schneider, and Robert C. J. Wills

Abstract

The high Atlantic surface salinity has sometimes been interpreted as a signature of the Atlantic meridional overturning circulation and an associated salt advection feedback. Here, the role of oceanic and atmospheric processes for creating the surface salinity difference between the Atlantic and Indo-Pacific is examined using observations and a conceptual model. In each basin, zonally averaged data are represented in diagrams relating net evaporation E˜ and surface salinity S. The data-pair curves in the E˜S plane share common features in both basins. However, the slopes of the curves are generally smaller in the Atlantic than in the Indo-Pacific, indicating a weaker sensitivity of the Atlantic surface salinity to net evaporation variations. To interpret these observations, a conceptual advective–diffusive model of the upper-ocean salinity is constructed. Notably, the E˜S relations can be qualitatively reproduced with only meridional diffusive salt transport. In this limit, the interbasin difference in salinity is caused by the spatial structure of net evaporation, which in the Indo-Pacific oceans contains lower meridional wavenumbers that are weakly damped by the diffusive transport. The observed Atlantic E˜S relationship at the surface reveals no clear influence of northward advection associated with the meridional overturning circulation; however, a signature of northward advection emerges in the relationship when the salinity is vertically averaged over the upper kilometer. The results indicate that the zonal-mean near-surface salinity is shaped primarily by the spatial pattern of net evaporation and the diffusive meridional salt transport due to wind-driven gyres and mesoscale ocean eddies, rather than by salt advection within the meridional overturning circulation.

Open access
Dylan Oldenburg, Robert C. J. Wills, Kyle C. Armour, LuAnne Thompson, and Laura C. Jackson

Abstract

Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.

Restricted access
Robert C. J. Wills, Kyle C. Armour, David S. Battisti, and Dennis L. Hartmann

Abstract

The North Atlantic has shown large multidecadal temperature shifts during the twentieth century. There is ongoing debate about whether this variability arises primarily through the influence of atmospheric internal variability, through changes in ocean circulation, or as a response to anthropogenic forcing. This study isolates the mechanisms driving Atlantic sea surface temperature variability on multidecadal time scales by using low-frequency component analysis (LFCA) to separate the influences of high-frequency variability, multidecadal variability, and long-term global warming. This analysis objectively identifies the North Atlantic subpolar gyre as the dominant region of Atlantic multidecadal variability. In unforced control runs of coupled climate models, warm subpolar temperatures are associated with a strengthened Atlantic meridional overturning circulation (AMOC) and anomalous local heat fluxes from the ocean into the atmosphere. Atmospheric variability plays a role in the intensification and subsequent weakening of ocean overturning and helps to communicate warming into the tropical Atlantic. These findings suggest that dynamical coupling between atmospheric and oceanic circulations is fundamental to the Atlantic multidecadal oscillation (AMO) and motivate approaching decadal prediction with a focus on ocean circulation.

Full access
Robert C. J. Wills, David S. Battisti, Kyle C. Armour, Tapio Schneider, and Clara Deser

Abstract

Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large-scale spatial averaging. This paper demonstrates how a pattern recognition method (signal-to-noise-maximizing pattern filtering) extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., El Niño, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El Niño–like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to skillfully identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing.

Restricted access
Marius Ǻrthun, Robert C. J. Wills, Helen L. Johnson, Léon Chafik, and Helene R. Langehaug

Abstract

Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations and pre-industrial control simulations, we identify a decadal mode of atmosphere-ocean variability in the North Atlantic with a dominant time scale of 13-18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air-sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.

Restricted access
Marius Årthun, Robert C. J. Wills, Helen L. Johnson, Léon Chafik, and Helene R. Langehaug

Abstract

Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.

Open access