Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Robert Dunn x
  • All content x
Clear All Modify Search
Robert J. H. Dunn
Full access
Bruce Ingleby, David Moore, Chris Sloan, and Robert Dunn

Abstract

Until recently surface humidity was predominantly measured using psychrometers (wet- and dry-bulb thermometers). In some countries, often in conjunction with increased automation, the measurement technique has changed—usually to capacitive sensors. The scale of the change in instrumentation and the error characteristics of the operational instruments have not been well documented. This paper provides an overview of these operational instruments and their error characteristics, intended to be useful for climate and forecast users of the data. It also includes detailed results from comparisons of psychrometers and capacitive sensors with a chilled mirror reference instrument at a site in the United Kingdom under (near) operational conditions. The psychrometers performed well near saturation but underread at lower humidities; any large errors tended to be positive because of insufficient water supply to the wet bulb. New capacitive sensors perform well but they usually drift to higher values during deployment (except in arid climates); they perform best at lower humidities and need regular adjustment and recalibration. The natural variation of relative humidity and the differences between instruments are larger in daytime than at night. Changes in the U.K. synoptic network are described in order to put the intercomparisons into context. The instruments used in selected other countries are surveyed. There is a need for better documentation and real-time exchange of metadata on the instruments used and any changes. Capacitive sensors are also used on some radiosondes and aircraft; relevant studies are briefly reviewed and some parallels with surface usage are drawn.

Full access
Elizabeth Lewis, Hayley Fowler, Lisa Alexander, Robert Dunn, Fergus McClean, Renaud Barbero, Selma Guerreiro, Xiao-Feng Li, and Stephen Blenkinsop

Abstract

Extreme short-duration rainfall can cause devastating flooding that puts lives, infrastructure, and natural ecosystems at risk. It is therefore essential to understand how this type of extreme rainfall will change in a warmer world. A significant barrier to answering this question is the lack of sub-daily rainfall data available at the global scale. To this end, a global sub-daily rainfall dataset based on gauged observations has been collated. The dataset is highly variable in its spatial coverage, record length, completeness and, in its raw form, quality. This presents significant difficulties for many types of analyses. The dataset currently comprises 23 687 gauges with an average record length of 13 years. Apart from a few exceptions, the earliest records begin in the 1950s. The Global Sub-Daily Rainfall Dataset (GSDR) has wide applications, including improving our understanding of the nature and drivers of sub-daily rainfall extremes, improving and validating of high-resolution climate models, and developing a high-resolution gridded sub-daily rainfall dataset of indices.

Open access
John A. Knox, Jared A. Rackley, Alan W. Black, Vittorio A. Gensini, Michael Butler, Corey Dunn, Taylor Gallo, Melyssa R. Hunter, Lauren Lindsey, Minh Phan, Robert Scroggs, and Synne Brustad

Using publicly available information gleaned from over 1700 found-and-returned objects on the “Pictures and Documents found after the 27 April 2011 Tornadoes” Facebook page, the authors have created a database of 934 objects lofted by at least 15 different tornadoes during the 27 April 2011 Super Outbreak in the southeast United States. Analysis of the takeoff and landing points of these objects using GIS and high-resolution numerical trajectory modeling techniques extends previous work on this subject that used less specific information for much smaller sets of tracked tornado debris. It was found that objects traveled as far as 353 km, exceeding the previous record for the longest documented tornado debris trajectory. While the majority of debris trajectories were 10° to the left of the average tornado track vector, the longest trajectories exhibited a previously undocumented tendency toward the right of the average tornado track vector. Based on results from a high-resolution trajectory model, a relationship between this tendency and the altitude of lofting of debris is hypothesized, with the debris reaching the highest altitudes taking the rightmost trajectories. The paper concludes with a discussion of the pros and cons of using social media information for meteorological research.

Full access
Stefan Brönnimann, Rob Allan, Christopher Atkinson, Roberto Buizza, Olga Bulygina, Per Dahlgren, Dick Dee, Robert Dunn, Pedro Gomes, Viju O. John, Sylvie Jourdain, Leopold Haimberger, Hans Hersbach, John Kennedy, Paul Poli, Jouni Pulliainen, Nick Rayner, Roger Saunders, Jörg Schulz, Alexander Sterin, Alexander Stickler, Holly Titchner, Maria Antonia Valente, Clara Ventura, and Clive Wilkinson

Abstract

Global dynamical reanalyses of the atmosphere and ocean fundamentally rely on observations, not just for the assimilation (i.e., for the definition of the state of the Earth system components) but also in many other steps along the production chain. Observations are used to constrain the model boundary conditions, for the calibration or uncertainty determination of other observations, and for the evaluation of data products. This requires major efforts, including data rescue (for historical observations), data management (including metadatabases), compilation and quality control, and error estimation. The work on observations ideally occurs one cycle ahead of the generation cycle of reanalyses, allowing the reanalyses to make full use of it. In this paper we describe the activities within ERA-CLIM2, which range from surface, upper-air, and Southern Ocean data rescue to satellite data recalibration and from the generation of snow-cover products to the development of a global station data metadatabase. The project has not produced new data collections. Rather, the data generated has fed into global repositories and will serve future reanalysis projects. The continuation of this effort is first contingent upon the organization of data rescue and also upon a series of targeted research activities to address newly identified in situ and satellite records.

Open access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access