Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Robert E. Hart x
  • Refine by Access: All Content x
Clear All Modify Search
Robert E. Hart

Abstract

An objectively defined three-dimensional cyclone phase space is proposed and explored. Cyclone phase is described using the parameters of storm-motion-relative thickness asymmetry (symmetric/nonfrontal versus asymmetric/frontal) and vertical derivative of horizontal height gradient (cold- versus warm-core structure via the thermal wind relationship). A cyclone's life cycle can be analyzed within this phase space, providing substantial insight into the cyclone structural evolution. An objective classification of cyclone phase is possible, unifying the basic structural description of tropical, extratropical, and hybrid cyclones into a continuum.

Stereotypical symmetric warm-core (tropical cyclone) and asymmetric cold-core (extratropical cyclone) life cycles are illustrated using 1° Navy Operational Global Atmospheric Prediction System (NOGAPS) operational analyses and 2.5° NCEP–NCAR reanalyses. The transitions between cyclone phases are clearly illustrated within the phase space, including extratropical transition, subtropical and tropical transition, and the development of warm seclusions within extratropical cyclones. The planet's northwestern hemisphere inhabitance of the proposed phase space between 1980 and 1999 is examined using NCEP–NCAR 2.5° reanalyses. Despite the inability to adequately resolve tropical cyclones at the coarse 2.5° resolution, warm-core cyclones (primarily warm-seclusion extratropical cyclones) have a mean intensity that is 10 hPa lower than that of cold-core cyclones. Warm-core cyclones also have a much larger variability for intensity distribution, with an increased occurrence of lower MSLP. Further, at 2.5° resolution the lowest analyzed MSLP for a warm-core cyclone was 14 hPa lower than that for a cyclone that remains cold core. These results suggest that cyclones that maintain solely a cold-core structure (no warm-seclusion or tropical development) may be associated with a significantly weaker minimum observed intensity at 2.5° resolution, although further examination using higher-resolution data is required to refine this.

Phase diagrams are being produced in real time to improve the forecasting of cyclone phase evolution and phase transitions, and to provide measures of phase predictability through ensembling of multiple models. The likelihood of warm-core development in cyclones can be anticipated by applying the diagnostics to various model forecasts, illuminating the potential for large intensity changes when the explicit model intensity forecasts may be insufficient.

Full access
Clark Evans and Robert E. Hart

Abstract

Extratropical transition brings about a number of environmentally induced structural changes within a transitioning tropical cyclone. Of particular interest among these changes is the acceleration of the wind field away from the cyclone’s center of circulation along with the outward movement of the radial wind maximum, together termed wind field expansion. Previous informal hypotheses aimed at understanding this evolution do not entirely capture the observed expansion, while a review of the literature shows no formal work done upon the topic beyond analyzing its occurrence. This study seeks to analyze the physical and dynamical mechanisms behind the wind field expansion using model simulations of a representative transition case, North Atlantic Tropical Cyclone Bonnie of 1998. The acceleration of the wind field along the outer periphery of the cyclone is found to be a function of the net import of absolute angular momentum within the cyclone’s environment along inflowing trajectories. This evolution is shown to be a natural outgrowth of the development of isentropic conveyor belts and asymmetries associated with extratropical cyclones. Asymmetries in the outer-core wind field manifest themselves via the tightening and development of height and temperature gradients within the cyclone’s environment. Outward movement of the radial wind maximum occurs coincident with integrated net cooling found inside the radius of maximum winds. Tests using a secondary circulation balance model show the radial wind maximum evolution to be similar yet opposite to the response noted for intensifying tropical cyclones with contracting eyewalls.

Full access
Andrew T. Hazelton and Robert E. Hart

Abstract

Understanding and predicting the evolution of the tropical cyclone (TC) inner core continues to be a major research focus in tropical meteorology. Eyewall slope and its relationship to intensity and intensity change is one example that has been insufficiently studied. Accordingly, in this study, radar reflectivity data are used to quantify and analyze the azimuthal average and variance of eyewall slopes from 124 flight legs among 15 Atlantic TCs from 2004 to 2011. The slopes from each flight leg are averaged into 6-h increments around the best-track times to allow for a comparison of slope and best-track intensity. A statistically significant relationship is found between both the azimuthal mean slope and pressure and between slope and wind. In addition, several individual TCs show higher correlation between slope and intensity, and TCs with both relatively high and low correlations are examined in case studies. In addition, a correlation is found between slope and radar-based eye size at 2 km, but size shows little correlation with intensity. There is also a tendency for the eyewall to tilt downshear by an average of approximately 10°. In addition, the upper eyewall slopes more sharply than the lower eyewall in about three-quarters of the cases. Analysis of case studies discusses the potential effects on eyewall slope of both inner-core and environmental processes, such as vertical shear, ocean heat content, and eyewall replacement cycles. These results indicate that eyewall slope is an important measure of TC inner-core structure, and may prove useful for future study of the processes that drive changes in the TC core.

Full access
Levi P. Cowan and Robert E. Hart

Abstract

An objective algorithm is developed for identifying jets in 200-hPa flow and applied to reanalysis data within 2000 km of Atlantic tropical cyclones (TCs) during 1979–2015. The resulting set of 16 512 jets is analyzed both qualitatively and quantitatively to describe the climatology of TC–jet configurations and jet behavior near TCs. Jets occur most commonly poleward of TCs within the 500–1000-km annulus, where TC outflow amplifies the background potential vorticity gradient. A rigorous clustering analysis is performed, resulting in statistically distinct clusters of jet traces that correspond to common configurations of large-scale flow near Atlantic TCs. The speed structure of westerly jets poleward of TCs is found to vary with location in the Atlantic basin, but acceleration of jets downstream of their closest approach to the TC due to interaction with the TC’s diabatic outflow is a consistent feature of these structures. In addition to the climatology developed here, this objectively constructed dataset of upper-tropospheric jets opens unique avenues for exploring TC–environment interactions and utilizing jets to quantitatively describe large-scale flow.

Free access
Robert E. Hart and Gregory S. Forbes

Abstract

This paper presents results from pilot studies of the use of model-generated hourly soundings to forecast nonconvectively produced strong wind gusts. Model soundings from the operational Eta and Meso Eta Models were used for a period of 14 months in 1996 and 1997. Skill does exist in forecasting strong to damaging surface wind gusts, although the forecasts are at the mercy of the model-based boundary layer stability forecast. The wind gust forecasts are more accurate during the daytime, when the boundary layer depth and stability is more accurately forecasted and also more conducive to vertical mixing of boundary layer winds. The results of this preliminary evaluation show that the model sounding–based forecasts provide a reasonable prediction tool for nonconvective strong wind gusts. Additionally, the results warrant more complete evaluations once the dataset has grown to sufficient size.

Full access
Charles N. Helms and Robert E. Hart

Abstract

The processes by which tropical cyclones evolve from loosely organized convective clusters are still poorly understood. Because of the data-sparse regions in which tropical cyclones form, observational studies of tropical cyclogenesis are often more difficult than studies of land-based convective phenomena. As a result, many studies of tropical cyclogenesis are limited to either a few case studies or rely on simulations. The 2010 PREDICT and GRIP field experiments have provided a new opportunity to gain insight into these processes using unusually dense observations in both time and space.

The present study aims at using these recent datasets to perform a detailed analysis of the three-dimensional evolution of both kinematic and thermodynamic fields in both developing and nondeveloping tropical convective systems in the western Atlantic. Five tropical convective systems are analyzed in this study: two nondeveloping, two developing, and one dissipating system. Although the analysis necessarily includes only a very limited number of cases, the results suggest that the convectively active nondeveloping systems and developing systems examined here have similar kinematic structures. The most notable difference is the distribution of humidity and the impacts this distribution has on the thermodynamics of the system. Displacements between the upper-level warm anomaly, responsible for midlevel vorticity generation, and the midlevel vorticity maximum are observed in both developing and nondeveloping cases. In the nondeveloping case the displacement appears to be caused by mid- and upper-level dry air. Further work is needed to fully understand the cause of these displacements and their relation to tropical cyclogenesis.

Full access
Robert E. Hart and Joshua H. Cossuth

As part of the American Meteorological Society's 30th Conference on Hurricanes and Tropical Meteorology in Ponte Vedra Beach, Florida, in April 2012, an academic lineage (“family tree”) of that community was presented to document the history of contributors to the field on the anniversary. For every self-identified or colleague-identified tropical meteorology scientist, the year of the person's most senior degree, major professor or mentors of that degree, and institution of that degree were documented and graphically presented. This information was supplemented through mining of websites, libraries, news and journal articles, obituaries, and other various historical archives. This manuscript documents the genesis of the family tree, the overall history represented by it, some statistics represented by the current incarnation, colorful personal stories that have come forward during its development, and plans for its expansion to the broader meteorology community.

Full access
Robert E. Hart and Jenni L. Evans

Abstract

For over a century it has been known that each vortex in a multiple vortex configuration will move in response to the other vortices. However, despite advances since that time, the complexities of multiple vortex scenarios when sheared environments are present are still not completely understood. The interaction of binary vortices within horizontal environmental shear is explored here through shallow water simulations on a β plane. Due to nonlinear feedbacks, the combination of environmental vorticity (or vorticity gradient) and shear, as well as the multiple vortex situation, results in a more complicated track than for a storm experiencing any individual component. Despite the complexity of these vortex–environment interactions, the use of previous single-vortex studies greatly aids interpretation. Centroid-relative motion of the individual vortices is considered, as well as the propagation of the vortex pair centroid, to understand motion effects of the different vortex–environment combinations.

As the vortices interact, vortex Rossby waves are generated through distortion of the symmetric vorticity field by the opposing vortex. Initially, the high-frequency waves have an insignificant effect upon vortex intensity or propagation, and β-induced wavenumber one asymmetry dominates as expected. However, as the waves approach a critical radius (ζ = 0), wave potential vorticity filamentation and stretching by the circulation of the adjacent vortex leads to a coupling of the two vortices. This vortex coupling results in enhanced propagation speeds of the two vortices proportional to the effective size of the dual-vortex system.

The sign of vorticity of the environmental flow can act to enhance or negate β-drift such that single- or dual-vortex propagation is altered. Further, when environmental vorticity is present, the rate of mutual orbit from Fujiwhara rotation is altered. When the environmental flow is cyclonic, the cyclonic mutual rotation of the vortices is accelerated. Conversely, when the environmental flow is anticyclonic, the mutual rotation of the vortices is substantially decelerated, but remains cyclonic.

Full access
Robert E. Hart and Jenni L. Evans

Abstract

A comprehensive climatology of extratropically transitioning tropical cyclones in the Atlantic basin is presented. Storm tracks and intensities over a period from 1899 to 1996 are examined. More detailed statistics are presented only for the most reliable period of record, beginning in 1950.

Since 1950, 46% of Atlantic tropical cyclones transitioned to the extratropical phase. The coastal Atlantic areas most likely to be impacted by a transitioning tropical cyclone are the northeast United States and the Canadian Maritimes (1–2 storms per year), and western Europe (once every 1–2 yr). Extratropically transitioning tropical cyclones represent 50% of landfalling tropical cyclones on the east coasts of the United States and Canada, and the west coast of Europe, combined. The likelihood that a tropical cyclone will transition increases toward the second half of the tropical season, with October having the highest probability (50%) of transition.

Atlantic transition occurs from 24° to 55°N, with a much higher frequency between the latitudes of 35° and 45°N. Transition occurs at lower latitudes at the beginning and end of the season, and at higher latitudes during the season peak (August–September). This seasonal cycle of transition location is the result of competing factors. The delayed warming of the Atlantic Ocean forces the location of transition northward late in the season, since the critical threshold for tropical development is pushed northward. Conversely, the climatologically favored region for baroclinic development expands southward late in the season, pinching off the oceanic surface area over which tropical development can occur. The relative positions of these two areas define the typical life cycle of a transitioning tropical cyclone: tropical intensification, tropical decay, extratropical transition and intensification, occlusion.

Using a synthesis of National Hurricane Center Best-Track data and European Centre for Medium-Range Weather Forecasts reanalyses data, the intensity changes during and after transition are evaluated. It is extremely rare for a transitioning tropical cyclone to regain (in the extratropical phase) its peak (tropical phase) intensity. However, of the 61 transitioning tropical storms during the period 1979–93, 51% underwent post-transition intensification. Over 60% of cyclones that underwent post-transition intensification originated south of 20°N. In contrast, 90% of tropical cyclones that underwent post-transition decay originated north of 20°N. This suggests that strong baroclinic characteristics during formation are not necessary for strong post-transition development;in fact, they appear to hinder post-transition intensification and, therefore, the post-transition life span of the cyclone itself.

Full access
Benjamin A. Schenkel and Robert E. Hart

Abstract

The following study examines the position and intensity differences of tropical cyclones (TCs) among the Best-Track and five atmospheric reanalysis datasets to evaluate the degree to which reanalyses are appropriate for studying TCs. While significant differences are found in both reanalysis TC intensity and position, the representation of TC intensity within reanalyses is found to be most problematic owing to its underestimation beyond what can be attributed solely to the coarse grid resolution. Moreover, the mean life cycle of normalized TC intensity within reanalyses reveals an underestimation of both prepeak intensification rates as well as a delay in peak intensity relative to the Best-Track. These discrepancies between Best-Track and reanalysis TC intensity and position can further be described through correlations with such parameters as Best-Track TC age, Best-Track TC intensity, Best-Track TC location, and the extended Best-Track TC size. Specifically, TC position differences within the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), ECMWF Interim Re-Analysis (ERA-I), and Modern Era Retrospective-Analysis for Research and Applications (MERRA) exhibit statistically significant correlations (0.27 ≤ R ≤ 0.38) with the proximity of TCs to observation dense areas in the North Atlantic (NATL) and western North Pacific (WPAC). Reanalysis TC intensity is found to be most strongly correlated with Best-Track TC size (0.53 ≤ R ≤ 0.70 for maximum 10-m wind speed; −0.71 ≤ R ≤ −0.53 for minimum mean sea level pressure) while exhibiting smaller, yet significant, correlations with Best-Track TC age, Best-Track TC intensity, and Best-Track TC latitude. Of the three basins examined, the eastern North Pacific (EPAC) has the largest reanalysis TC position differences and weakest intensities possibly due to a relative dearth of observations, the strong nearby terrain gradient, and the movement of TCs away from the most observation dense portion of the basin over time. The smaller mean Best-Track size and shorter mean lifespan of Best-Track EPAC TCs may also yield weaker reanalysis TC intensities. Of the five reanalyses, the smaller position differences and stronger intensities found in the Climate Forecast System Reanalysis (CFSR) and Japanese 25-year Reanalysis (JRA-25) are attributed to the use of vortex relocation and TC wind profile retrievals, respectively. The discrepancies in TC position between the Best-Track and reanalyses combined with the muted magnitude of TC intensity and its partially nonphysical life cycle within reanalyses suggests that caution should be exercised when utilizing these datasets for studies that rely either on TC intensity (raw or normalized) or track. Finally, several cases of nonphysical TC structure also argue that further work is needed to improve TC representation while implying that studies focusing solely on TC intensity and track do not necessarily extend to other aspects of TC representation.

Full access