Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Robert E. Jensen x
- Refine by Access: All Content x
Abstract
The directional response of a fully arisen sea to a ∼90° wind shift is studied using a combination of airborne radar and in situ directional wave observations. The observations were made in February 1991 as a part of the Surface Wave Dynamics Experiment. Radar and buoy mean wave directions in several frequency bands are polynomial-smoothed in fetch and duration coordinates and analyzed for the directional relaxation parameter b by using finite differences of the gridded, smoothed data in a one-dimensional advection equation for the mean wave direction. The analysis is carried out using several different sets of buoy wind and wave data in an event window of 40 h in duration by 200 km in fetch (100–300 km offshore). For the most well-populated and reliable inverse wave age class in the study, 1.2 ⩽ U/c < 1.6, the authors find b = 3.3(±0.1) × 10−5. The data do not support any inference as to possible wave age dependence other than, perhaps, the null hypothesis, b = const (U/c). Frequencies near the spectral peak do not respond according to the relaxation model, and misleading values of b may result from a standard analysis of the data. Wave–current interactions are a potential source of bias. Reflected waves in the study area may be biasing the present result low by as much as 20%.
Abstract
The directional response of a fully arisen sea to a ∼90° wind shift is studied using a combination of airborne radar and in situ directional wave observations. The observations were made in February 1991 as a part of the Surface Wave Dynamics Experiment. Radar and buoy mean wave directions in several frequency bands are polynomial-smoothed in fetch and duration coordinates and analyzed for the directional relaxation parameter b by using finite differences of the gridded, smoothed data in a one-dimensional advection equation for the mean wave direction. The analysis is carried out using several different sets of buoy wind and wave data in an event window of 40 h in duration by 200 km in fetch (100–300 km offshore). For the most well-populated and reliable inverse wave age class in the study, 1.2 ⩽ U/c < 1.6, the authors find b = 3.3(±0.1) × 10−5. The data do not support any inference as to possible wave age dependence other than, perhaps, the null hypothesis, b = const (U/c). Frequencies near the spectral peak do not respond according to the relaxation model, and misleading values of b may result from a standard analysis of the data. Wave–current interactions are a potential source of bias. Reflected waves in the study area may be biasing the present result low by as much as 20%.
Abstract
The importance of quantifying the accuracy in wave measurements is critical to not only understand the complexities of wind-generated waves, but imperative for the interpretation of implied accuracy of the prediction systems that use these data for verification and validation. As wave measurement systems have unique collection and processing attributes that result in large accuracy ranges, this work quantifies bias that may be introduced into wave models from the newly operational NOAA National Data Buoy Center (NDBC) 2.1-m hull. Data quality consistency between the legacy NDBC 3-m aluminum hulls and the new 2.1-m hull is compared to a relative reference, and provides a standardized methodology and graphical representation template for future intrameasurement evaluations. Statistical analyses and wave spectral comparisons confirm that the wave measurements reported from the NDBC 2.1-m hulls show an increased accuracy from previously collected NDBC 3-m hull wave data for significant wave height and average wave period, while retaining consistent accuracy for directional results, purporting that hull size does not impact NDBC directional data estimates. Spectrally, the NDBC 2.1-m hulls show an improved signal-to-noise ratio, allowing for increase in energy retention in the lower-frequency spectral range, with an improved high-frequency spectral accuracy above 0.25 Hz within the short seas and wind chop wave component regions. These improvements in both NDBC bulk and spectral data accuracy provide confidence for the wave community’s use of NDBC wave data to drive wave model technologies, improvements, and validations.
Abstract
The importance of quantifying the accuracy in wave measurements is critical to not only understand the complexities of wind-generated waves, but imperative for the interpretation of implied accuracy of the prediction systems that use these data for verification and validation. As wave measurement systems have unique collection and processing attributes that result in large accuracy ranges, this work quantifies bias that may be introduced into wave models from the newly operational NOAA National Data Buoy Center (NDBC) 2.1-m hull. Data quality consistency between the legacy NDBC 3-m aluminum hulls and the new 2.1-m hull is compared to a relative reference, and provides a standardized methodology and graphical representation template for future intrameasurement evaluations. Statistical analyses and wave spectral comparisons confirm that the wave measurements reported from the NDBC 2.1-m hulls show an increased accuracy from previously collected NDBC 3-m hull wave data for significant wave height and average wave period, while retaining consistent accuracy for directional results, purporting that hull size does not impact NDBC directional data estimates. Spectrally, the NDBC 2.1-m hulls show an improved signal-to-noise ratio, allowing for increase in energy retention in the lower-frequency spectral range, with an improved high-frequency spectral accuracy above 0.25 Hz within the short seas and wind chop wave component regions. These improvements in both NDBC bulk and spectral data accuracy provide confidence for the wave community’s use of NDBC wave data to drive wave model technologies, improvements, and validations.
Abstract
Recent tests of all generations of numerical wave models indicate that extreme wave heights are significantly underpredicted by these models. This behavior is consistent with the finding by Ewing and Laing that fully developed wave spectra do not have the universal self-similar form postulated by Pierson and Moskowitz. This paper postulates that it is inappropriate to scale fully developed seas by winds taken from a fixed level above the mean sea surface. Instead, winds should be taken from a dynamically scaled height that is linearly related to the wavelength of the spectral peak. This alternative scaling is consistent with friction-velocity scaling and yields predicted wave heights and periods that are in better agreement with the data collected by Ewing and Laing and appear to explain some of the discrepencies in results from previous studies with numerical wave models in large storms.
Abstract
Recent tests of all generations of numerical wave models indicate that extreme wave heights are significantly underpredicted by these models. This behavior is consistent with the finding by Ewing and Laing that fully developed wave spectra do not have the universal self-similar form postulated by Pierson and Moskowitz. This paper postulates that it is inappropriate to scale fully developed seas by winds taken from a fixed level above the mean sea surface. Instead, winds should be taken from a dynamically scaled height that is linearly related to the wavelength of the spectral peak. This alternative scaling is consistent with friction-velocity scaling and yields predicted wave heights and periods that are in better agreement with the data collected by Ewing and Laing and appear to explain some of the discrepencies in results from previous studies with numerical wave models in large storms.
Abstract
Scatterometer model functions that directly estimate friction velocity have been developed and are being tested with radar and in situ data acquired during the Surface Wave Dynamics Experiment (SWADE) of 1991. Ku-band and C-band scatterometers were operated simultaneously for extensive intervals for each of 10 days during SWADE. The model function developed previously from the FASINEX experiment converts the Ku-band normalized radar cross-section (NRCS) measurements into friction velocity estimates. These are compared to in situ estimates of surface wind stress and direction across a wide area both on and off the Gulf Stream (for hourly intervals), which were determined from buoy and meteorological measurements during February and March 1991. This involved the combination of a local, specially derived wind field, with an ocean wave model coupled through a sea-state-dependent drag coefficient. The Ku-band estimates u∗ magnitude are in excellent agreement with the in situ values. The C-band scatterometer measurements were coincident with the Ku-band NRCSs, whose u∗ estimates are then used to calibrate the C band. The results show the C-band NRCS dependence at 20°, 30°, 40°, and 50° to be less sensitive to friction velocity than the corresponding cases for Ku band. The goal is to develop the capability of making friction velocity estimates (and surface stress) from radar cross-sectional data acquired by satellite scatterometers.
Abstract
Scatterometer model functions that directly estimate friction velocity have been developed and are being tested with radar and in situ data acquired during the Surface Wave Dynamics Experiment (SWADE) of 1991. Ku-band and C-band scatterometers were operated simultaneously for extensive intervals for each of 10 days during SWADE. The model function developed previously from the FASINEX experiment converts the Ku-band normalized radar cross-section (NRCS) measurements into friction velocity estimates. These are compared to in situ estimates of surface wind stress and direction across a wide area both on and off the Gulf Stream (for hourly intervals), which were determined from buoy and meteorological measurements during February and March 1991. This involved the combination of a local, specially derived wind field, with an ocean wave model coupled through a sea-state-dependent drag coefficient. The Ku-band estimates u∗ magnitude are in excellent agreement with the in situ values. The C-band scatterometer measurements were coincident with the Ku-band NRCSs, whose u∗ estimates are then used to calibrate the C band. The results show the C-band NRCS dependence at 20°, 30°, 40°, and 50° to be less sensitive to friction velocity than the corresponding cases for Ku band. The goal is to develop the capability of making friction velocity estimates (and surface stress) from radar cross-sectional data acquired by satellite scatterometers.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.
Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.
Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.