Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Robert E. Todd x
  • All content x
Clear All Modify Search
Joleen Heiderich and Robert E. Todd

Abstract

The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water.

Restricted access
ROBERT E. HORTON and GEORGE T. TODD

Abstract

An extremely heavy rainfall occurred at Taborton, N. Y., on the afternoon and night of August 10, 1920. The catch as measured in a bucket, gave a total measurement for 24 hours as 11.62 inches, of which 8.95 inches fell during the main storm in late afternoon. Experiments were tried to determine the magnitude of errors owing to splash from a near-by roof and eddies about the pail. Deductive studies were made on the rise of water in Big Bownman Pond, the washing of roads, and dislodging of boundlers and all the evidence tends to the conclusion that the rainfall certainly amounted to 8 inches. The extent of the heavy downpour was very small, being most intense at Taborton and falling off markedly in all directions, towns 15 to 20 miles distant receiving only 1 or 2 inches of rain. In August, 1891, there was a similar heavy downpour in this locality, in which it is probable that more rain fell than on this occasion.

Full access
Robert E. Todd, W. Brechner Owens, and Daniel L. Rudnick

Abstract

Potential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.

Full access
Todd D. Sikora, Eric B. Wendoloski, and Robert E. Marter

Abstract

This brief paper addresses the frequency of precipitating open-cell convection over the northeastern Gulf of Alaska during a 5-yr period (2002–06). The research employs 154 previously documented satellite synthetic aperture radar–derived wind speed (SDWS) images that contain open-cell convection signatures. Each SDWS image is paired with a near-in-time, National Weather Service Weather Surveillance Radar-1988 Doppler Level-III 0.5°-elevation-angle short-range base reflectivity image from coastal Alaska for which coverage spatially overlaps open-cell convection signatures. The time difference between any two images of a single pair is typically a few minutes or less. For 65% of the image pairs, at least one SDWS open-cell convection signature in the overlap region is associated with precipitation. That percentage may be conservative given the method used in this research. Thus, the results of this research support a suggestion that has been posed in previous studies that the organization of open-cell convection can be controlled by the interaction of the environmental vertical wind shear and precipitation-driven cold pools.

Full access
Robert E. Todd, Glen G. Gawarkiewicz, and W. Brechner Owens

Abstract

Observations with fine horizontal resolution are used to identify the horizontal scales of variability over the Middle Atlantic Bight (MAB) shelf break and continental rise. Spray gliders collected observations along two alongshelf transects over the continental rise in March–April 2006 and along 16 cross-shelf transects over the shelf break and continental rise during July–October 2007. Horizontal resolution varied from 1 km or finer over the shelf to 6 km in deep water. These observations allow horizontal thermohaline variability offshore of the MAB shelf break to be examined for the first time. Structure functions of temperature and salinity, the mean square difference between observations separated by specified distances, reveal the horizontal spatial scales in the region. Exponential (e-folding) scales of temperature and salinity increase from 8–13 km near the shelf break to about 30 km over the continental rise. Just offshore of the shelf break, alongshelf structure functions exhibit periodicity with a 40–50-km wavelength that matches the wavelength of shelfbreak frontal meanders. Farther offshore, alongshelf structure functions suggest a dominant wavelength of 175–250 km, but these scales are only marginally resolved by the available observations. Examination of structure functions of along-isopycnal salinity (i.e., spice) suggests that interleaving of shelf and slope water masses contributes most of the horizontal variability near the MAB shelf break, but heaving of isopycnals is the primary source of horizontal variability over the continental rise.

Full access
Carl E. Hane, Robert M. Rabin, Todd M. Crawford, Howard B. Bluestein, and Michael E. Baldwin

Abstract

A dryline that occurred on 16 May 1991 within a synoptically active environment is examined in detail using research aircraft, radar, surface, satellite, and upper air observations. The work focuses on multiple boundaries in the dryline environment and initiation of tornadic storms in two along-line areas.

Aircraft measurements in the boundary layer reveal that both the east–west extent of moisture gradients and the number of regions containing large moisture gradients vary in the along-dryline direction. Aircraft penetrations of thinlines observed in clear air return from radar reveal that all thinlines are associated with convergence and a moisture gradient, and that more distinct thinlines are associated with stronger convergence. However, significant moisture gradients are not always associated with either thinlines or convergent signatures.

Convective clouds on this day formed at the dryline rather than significantly east of the dryline. The three thunderstorm cells that occurred in east-central Oklahoma developed along a 20-km section of the dryline south of a dryline bulge and within a 30-min period. The storms appear to have developed in this location owing to enhanced convergence resulting from backed winds in the moist air in response to lowered pressure in the warm air to the northwest. Aircraft measurements in the boundary layer and satellite-sensed surface temperature both indicate localized warming in this area to the northwest.

Farther north there was a 70–100-km segment along the dryline where few convective clouds formed during the afternoon. This coincided with a swath of cooler boundary layer air that resulted from reduced surface heating over an area that received significant thunderstorm rainfall during the previous night.

A severe thunderstorm complex that developed along the Kansas–Oklahoma border was initiated at the intersection of the dryline and a cloud line that extended into the dry air. An aircraft penetration of the cloud line about 12 km from its intersection with the dryline shows convergence and deepened low-level moisture at the cloud line. The cloud field that evolved into the cloud line over a period of several hours developed over the area that had received the heaviest rainfall during the previous night.

Full access
Carl E. Hane, Michael E. Baldwin, Howard B. Bluestein, Todd M. Crawford, and Robert M. Rabin

Abstract

Through a case study approach the motion of a dryline (on 16 May 1991) within a synoptically active environment in the southern plains, along which severe storms ultimately developed, is examined in detail. Observations from research aircraft, surface mesonetwork stations, mobile ballooning vehicles, radar, wind profilers, and operational surface and upper air networks are examined and combined. Additionally, output from the operational mesoscale Eta Model is examined to compare predictions of dryline motion with observations and to aid in interpretation of observations.

The dryline on this day advanced rapidly eastward and included formation of a bulge; additionally, in at least two instances it exhibited redevelopment (loss of definition at one location and gain at another). Aircraft observations revealed that an eastward redevelopment occurred in the early afternoon and was characterized by a series of four “steps” along the western edge of the boundary layer moisture. The westernmost and easternmost steps coincide with the locations of the dryline before and after redevelopment, respectively. The retreat of the dryline in the central and southern portion of the analysis domain in the late afternoon included both continuous motion and redevelopment toward the west-northwest. This dual-mode retreat of the dryline was accompanied by gradual backing of the winds and moistening in low levels.

The Eta Model forecast initialized at 1200 UTC produced dryline features that were qualitatively similar to observed fields. The eastward motion of a broad area of enhanced moisture gradient agreed well with observations following an initial spinup period. A north–south moisture convergence axis preceded the rapid eastward motion of the dryline by several hours. Lack of subsidence in the air behind the modeled dryline leads to the conclusion that processes other than downward transfer of horizontal momentum by larger-scale motions (that would support eastward advection) produced the rapid dryline motion and observed eastward dryline bulge. Results of diagnosing physical processes affecting model dryline motion point toward boundary layer vertical mixing coupled with advection of dry air aloft as vital components in rapid advance of the dryline eastward in this synoptically active case.

Full access
Carl E. Hane, Howard B. Bluestein, Todd M. Crawford, Michael E. Baldwin, and Robert M. Rabin

Abstract

Long-lived thunderstorms were initiated during the afternoon of 26 May 1991 ahead of a dryline in northwestern Oklahoma. Various reasons for initiation in this particular along-dryline location are investigated through analysis of observations collected during the Cooperative Oklahoma Profiler Studies—1991 field program. Observing systems included in situ and radar instrumentation aboard a research aircraft, soundings from mobile laboratories, a mesonetwork of surface stations, meteorological satellites, and operational networks of surface and upper-air stations.

Elevated moistening east of the dryline revealed by soundings and aircraft observations in combination with thermal plume activity was apparently insufficient to promote sustained convection on this day without aid from an additional lifting mechanism. Satellite observations reveal scattered convection along the dryline by midafternoon and a convective cloud line intersecting the dryline at an angle in the area of most pronounced storm initiation, extending southwestward into the dry air. Another prominent feature on this day was a mesoscale bulge along the dryline extending northeastward into southwest Kansas. Deep convection was initiated along this bulge, but was in general short-lived.

Potential causes of the lifting associated with the cloud line that was apparently key to the preferred location for storm development in northwest Oklahoma were investigated: (a) a mesoscale circulation resulting from horizontal differences in radiative (temperature) properties of the underlying surface and (b) upward motion induced by an upper-level mesoscale disturbance. Analysis of vegetative and surface temperature distributions from satellite observations suggests a potential (more research is needed) link between surface characteristics and the development of the dryline bulge and observed cloud line through horizontal differences in vertical momentum transport. A run of the currently operational eta model indicates some skill in predicting dryline location and motion and predicts upward motion in the northern part of the region that was generally more convectively active, but shows no indication of upper-level support in the vicinity of the observed cloud line.

Full access
Julie Jakoboski, Robert E. Todd, W. Brechner Owens, Kristopher B. Karnauskas, and Daniel L. Rudnick

Abstract

The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.

Free access
Claudia Cenedese, Robert E. Todd, Glen G. Gawarkiewicz, W. Brechner Owens, and Andrey Y. Shcherbina

Abstract

Interactions between vortices and a shelfbreak current are investigated, with particular attention to the exchange of waters between the continental shelf and slope. The nonlinear, three-dimensional interaction between an anticyclonic vortex and the shelfbreak current is studied in the laboratory while varying the ratio ε of the maximum azimuthal velocity in the vortex to the maximum alongshelf velocity in the shelfbreak current. Strong interactions between the shelfbreak current and the vortex are observed when ε > 1; weak interactions are found when ε < 1. When the anticyclonic vortex comes in contact with the shelfbreak front during a strong interaction, a streamer of shelf water is drawn offshore and wraps anticyclonically around the vortex. Measurements of the offshore transport and identification of the particle trajectories in the shelfbreak current drawn offshore from the vortex allow quantification of the fraction of the shelfbreak current that is deflected onto the slope; this fraction increases for increasing values of ε. Experimental results in the laboratory are strikingly similar to results obtained from observations in the Middle Atlantic Bight (MAB); after proper scaling, measurements of offshore transport and offshore displacement of shelf water for vortices in the MAB that span a range of values of ε agree well with laboratory predictions.

Full access