Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Robert Ferraro x
  • Refine by Access: All Content x
Clear All Modify Search
Joao Teixeira, Duane Waliser, Robert Ferraro, Peter Gleckler, Tsengdar Lee, and Gerald Potter

The objective of the Observations for Model Intercomparison Projects (Obs4MIPs) is to provide observational data to the climate science community, which is analogous (in terms of variables, temporal and spatial frequency, and periods) to output from the 5th phase of the World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project (CMIP5) climate model simulations. The essential aspect of the Obs4MIPs methodology is that it strictly follows the CMIP5 protocol document when selecting the observational datasets. Obs4MIPs also provides documentation that describes aspects of the observational data (e.g., data origin, instrument overview, uncertainty estimates) that are of particular relevance to scientists involved in climate model evaluation and analysis. In this paper, we focus on the activities related to the initial set of satellite observations, which are being carried out in close coordination with CMIP5 and directly engage NASA's observational (e.g., mission and instrument) science teams. Having launched Obs4MIPs with these datasets, a broader effort is also briefly discussed, striving to engage other agencies and experts who maintain datasets, including reanalysis, which can be directly used to evaluate climate models. Different strategies for using satellite observations to evaluate climate models are also briefly summarized.

Full access
Robert Ferraro, Duane E. Waliser, Peter Gleckler, Karl E. Taylor, and Veronika Eyring
Full access
Stanley Q. Kidder, John A. Knaff, Sheldon J. Kusselson, Michael Turk, Ralph R. Ferraro, and Robert J. Kuligowski

Abstract

Inland flooding caused by heavy rainfall from landfalling tropical cyclones is a significant threat to life and property. The tropical rainfall potential (TRaP) technique, which couples satellite estimates of rain rate in tropical cyclones with track forecasts to produce a forecast of 24-h rainfall from a storm, was developed to better estimate the magnitude of this threat. This paper outlines the history of the TRaP technique, details its current algorithms, and offers examples of its use in forecasting. Part II of this paper covers verification of the technique.

Full access
Xubin Zeng, Steve Ackerman, Robert D. Ferraro, Tsengdar J. Lee, John J. Murray, Steven Pawson, Carolyn Reynolds, and Joao Teixeira
Full access
Pingping Xie, John E. Janowiak, Phillip A. Arkin, Robert Adler, Arnold Gruber, Ralph Ferraro, George J. Huffman, and Scott Curtis

Abstract

As part of the Global Precipitation Climatology Project (GPCP), analyses of pentad precipitation have been constructed on a 2.5° latitude–longitude grid over the globe for a 23-yr period from 1979 to 2001 by adjusting the pentad Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) against the monthly GPCP-merged analyses. This adjustment is essential because the precipitation magnitude in the pentad CMAP is not consistent with that in the monthly CMAP or monthly GPCP datasets primarily due to the differences in the input data sources and merging algorithms, causing problems in applications where joint use of the pentad and monthly datasets is necessary. First, pentad CMAP-merged analyses are created by merging several kinds of individual data sources including gauge-based analyses of pentad precipitation, and estimates inferred from satellite observations. The pentad CMAP dataset is then adjusted by the monthly GPCP-merged analyses so that the adjusted pentad analyses match the monthly GPCP in magnitude while the high-frequency components in the pentad CMAP are retained. The adjusted analyses, called the GPCP-merged analyses of pentad precipitation, are compared to several gauge-based datasets. The results show that the pentad GPCP analyses reproduced spatial distribution patterns of total precipitation and temporal variations of submonthly scales with relatively high quality especially over land. Simple applications of the 23-yr dataset demonstrate that it is useful in monitoring and diagnosing intraseasonal variability. The Pentad GPCP has been accepted by the GPCP as one of its official products and is being updated on a quasi-real-time basis.

Full access
Ralph Ferraro, Paul Pellegrino, Michael Turk, Wanchun Chen, Shuang Qiu, Robert Kuligowski, Sheldon Kusselson, Antonio Irving, Stan Kidder, and John Knaff

Abstract

Satellite analysts at the Satellite Services Division (SSD) of the National Environmental, Satellite, Data, and Information Service (NESDIS) routinely generate 24-h rainfall potential for all tropical systems that are expected to make landfall within 24 to at most 36 h and are of tropical storm or greater strength (>65 km h−1). These estimates, known as the tropical rainfall potential (TRaP), are generated in an objective manner by taking instantaneous rainfall estimates from passive microwave sensors, advecting this rainfall pattern along the predicted storm track, and accumulating rainfall over the next 24 h.

In this study, the TRaPs generated by SSD during the 2002 Atlantic hurricane season have been validated using National Centers for Environmental Prediction (NCEP) stage IV hourly rainfall estimates. An objective validation package was used to generate common statistics such as correlation, bias, root-mean-square error, etc. It was found that by changing the minimum rain-rate threshold, the results could be drastically different. It was determined that a minimum threshold of 25.4 mm day−1 was appropriate for use with TRaP. By stratifying the data by different criteria, it was discovered that the TRaPs generated using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, with its optimal set of measurement frequencies, improved spatial resolution, and advanced retrieval algorithm, produced the best results. In addition, the best results were found for TRaPs generated for storms that were between 12 and 18 h from landfall. Since the TRaP is highly dependent on the forecast track of the storm, selected TRaPs were rerun using the observed track contained in the NOAA/Tropical Prediction Center (TPC) “best track.” Although some TRaPs were not significantly improved by using this best track, significant improvements were realized in some instances. Finally, as a benchmark for the usefulness of TRaP, comparisons were made to Eta Model 24-h precipitation forecasts as well as three climatological maximum rainfall methods. It was apparent that the satellite-based TRaP outperforms the Eta Model in virtually every statistical category, while the climatological methods produced maximum rainfall totals closer to the stage IV maximum amounts when compared with TRaP, although these methods are for storm totals while TRaP is for a 24-h period.

Full access
Baijun Tian, Huikyo Lee, Duane E. Waliser, Robert Ferraro, Jinwon Kim, Jonathan Case, Takamichi Iguchi, Eric Kemp, Di Wu, William Putman, and Weile Wang

Abstract

Several dynamically downscaled climate simulations with various spatial resolutions (24, 12, and 4 km) and spectral nudging strengths (0, 600, and 2000 km) have been run over the contiguous United States from 2000 to 2009 using the high-resolution NASA Unified Weather and Research Forecasting (NU-WRF) regional model initialized and constrained by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). This paper summarizes the authors’ efforts on the development of a model performance metric and its application to assess summer precipitation over the U.S. Great Plains (USGP) in these downscaled climate simulations. A new model performance metric T was first developed that uses both the linear correlation coefficient and mean square error and is consistent with other commonly used metrics, but gives a bigger separation between good and bad simulations. This metric T was then applied to the summer mean precipitation spatial pattern, diurnal Hovmöller diagram, and diurnal spatial pattern over the USGP from the simulations focusing on the summer precipitation diurnal cycle related to mesoscale convective systems (MCSs). The metric T skill scores increase significantly from the control simulation to the nudged simulations and from the nudged simulations with shorter wavelengths to the nudged simulations with longer wavelengths, but do not change much from MERRA-2 to the downscaled simulations or between the various downscaled simulations with different spatial resolutions. Thus, there is some credibility, but no significant value added compared to MERRA-2, of the downscaled climate simulations of the summer precipitation over the USGP.

Full access
George J. Huffman, Robert F. Adler, Philip Arkin, Alfred Chang, Ralph Ferraro, Arnold Gruber, John Janowiak, Alan McNab, Bruno Rudolf, and Udo Schneider

The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5° × 2.5° latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

Full access
Dean N. Williams, V. Balaji, Luca Cinquini, Sébastien Denvil, Daniel Duffy, Ben Evans, Robert Ferraro, Rose Hansen, Michael Lautenschlager, and Claire Trenham

Abstract

Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) allows users to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP)—output used by the Intergovernmental Panel on Climate Change assessment reports. Data served by ESGF not only include model output (i.e., CMIP simulation runs) but also include observational data from satellites and instruments, reanalyses, and generated images. Metadata summarize basic information about the data for fast and easy data discovery.

Full access
Robert F. Adler, George J. Huffman, Alfred Chang, Ralph Ferraro, Ping-Ping Xie, John Janowiak, Bruno Rudolf, Udo Schneider, Scott Curtis, David Bolvin, Arnold Gruber, Joel Susskind, Philip Arkin, and Eric Nelkin

Abstract

The Global Precipitation Climatology Project (GPCP) Version-2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5° latitude × 2.5° longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The dataset is extended back into the premicrowave era (before mid-1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the rain gauge analysis. The dataset archive also contains the individual input fields, a combined satellite estimate, and error estimates for each field. This monthly analysis is the foundation for the GPCP suite of products, including those at finer temporal resolution. The 23-yr GPCP climatology is characterized, along with time and space variations of precipitation.

Full access