Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert J. Knapp x
  • Refine by Access: All Content x
Clear All Modify Search
Henry Stommel
,
Robert J. Stanley
,
George P. Knapp
,
Robert Knox
, and
Anthony Amos

Abstract

Two hydrographic sections made by R.V. Atlantis II in June 1972 are presented to confirm the existence of an abrupt drop in level of deep isotherms along the Brazil coast at ∼15°S latitude. The phenomenon is explicable in terms of the Stommel-Arons (1972) model of a bottom slope current as a result of supercritical slope of the bottom at the Abrolhos shoals which terminate the onshore stagnant region.

Full access
Charles K. Rutledge
,
Gregory L. Schuster
,
Thomas P. Charlock
,
Frederick M. Denn
,
William L. Smith Jr.
,
Bryan E. Fabbri
,
James J. Madigan Jr.
, and
Robert J. Knapp

When radiometers on satellites point toward Earth with the goal of sensing an important variable quantitatively, rather than just creating a pleasing image, the task at hand is often not simple. The electromagnetic energy detected by the radiometers is a puzzle of various signals; it must be solved to quantify the specific physical variable. This task, called the retrieval or remote-sensing process, is important to most satellite-based observation programs. It would be ideal to test the algorithms for retrieval processes in a sealed laboratory, where all the relevant parameters could be easily measured. The size and complexity of the Earth make this impractical. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has done the next-best thing by developing a long-term radiation observation site over the ocean. The relatively low and homogeneous surface albedo of the ocean make this type of site a simpler environment for observing and validating radiation parameters from satellite-based instruments. To characterize components of the planet's energy budget, CERES uses a variety of retrievals associated with several satellite-based instruments onboard NASA's Earth Observing System (EOS). A new surface observation project called the CERES Ocean Validation Experiment (COVE), operating on a rigid ocean platform, is supplying data to validate some of these instruments and retrieval products. This article describes the ocean platform and the types of observations being performed there, and highlights of some scientific problems being addressed.

Full access