Search Results
You are looking at 1 - 10 of 13 items for
- Author or Editor: Roger Pulwarty x
- Refine by Access: All Content x
The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise. The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise.
The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise. The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise.
Societal impacts from weather and climate extremes, and trends in those impacts, are a function of both climate and society. United States losses resulting from weather extremes have grown steadily with time. Insured property losses have trebled since 1960, but deaths from extremes have not grown except for those due to floods and heat waves. Data on losses are difficult to find and must be carefully adjusted before meaningful assessments can be made. Adjustments to historical loss data assembled since the late 1940s shows that most of the upward trends found in financial losses are due to societal shifts leading to ever-growing vulnerability to weather and climate extremes. Geographical locations of the large loss trends establish that population growth and demographic shifts are the major factors behind the increasing losses from weather–climate extremes. Most weather and climate extremes in the United States do not exhibit steady, multidecadal increases found in their loss values. Without major changes in societal responses to weather and climate extremes, it is reasonable to predict ever-increasing losses even without any detrimental climate changes. Recognition of these trends in societal vulnerability to weather-climate extremes suggests that the present focus on mitigating the greenhouse effect should be complemented by a greater emphasis on adaptation. Identifying and understanding this societal vulnerability has great importance for understanding the nation's economy, in guiding governmental policies, and for planning for future mitigative activities including ways for society to adapt to possible effects of a changing climate.
Societal impacts from weather and climate extremes, and trends in those impacts, are a function of both climate and society. United States losses resulting from weather extremes have grown steadily with time. Insured property losses have trebled since 1960, but deaths from extremes have not grown except for those due to floods and heat waves. Data on losses are difficult to find and must be carefully adjusted before meaningful assessments can be made. Adjustments to historical loss data assembled since the late 1940s shows that most of the upward trends found in financial losses are due to societal shifts leading to ever-growing vulnerability to weather and climate extremes. Geographical locations of the large loss trends establish that population growth and demographic shifts are the major factors behind the increasing losses from weather–climate extremes. Most weather and climate extremes in the United States do not exhibit steady, multidecadal increases found in their loss values. Without major changes in societal responses to weather and climate extremes, it is reasonable to predict ever-increasing losses even without any detrimental climate changes. Recognition of these trends in societal vulnerability to weather-climate extremes suggests that the present focus on mitigating the greenhouse effect should be complemented by a greater emphasis on adaptation. Identifying and understanding this societal vulnerability has great importance for understanding the nation's economy, in guiding governmental policies, and for planning for future mitigative activities including ways for society to adapt to possible effects of a changing climate.
Abstract
Flash droughts, characterized by their unusually rapid intensification, have garnered increasing attention within the weather, climate, agriculture, and ecological communities in recent years due to their large environmental and socioeconomic impacts. Because flash droughts intensify quickly, they require different early warning capabilities and management approaches than are typically used for slower-developing “conventional” droughts. In this essay, we describe an integrated research-and-applications agenda that emphasizes the need to reconceptualize our understanding of flash drought within existing drought early warning systems by focusing on opportunities to improve monitoring and prediction. We illustrate the need for engagement among physical scientists, social scientists, operational monitoring and forecast centers, practitioners, and policy-makers to inform how they view, monitor, predict, plan for, and respond to flash drought. We discuss five related topics that together constitute the pillars of a robust flash drought early warning system, including the development of 1) a physically based identification framework, 2) comprehensive drought monitoring capabilities, and 3) improved prediction over various time scales that together 4) aid impact assessments and 5) guide decision-making and policy. We provide specific recommendations to illustrate how this fivefold approach could be used to enhance decision-making capabilities of practitioners, develop new areas of research, and provide guidance to policy-makers attempting to account for flash drought in drought preparedness and response plans.
Abstract
Flash droughts, characterized by their unusually rapid intensification, have garnered increasing attention within the weather, climate, agriculture, and ecological communities in recent years due to their large environmental and socioeconomic impacts. Because flash droughts intensify quickly, they require different early warning capabilities and management approaches than are typically used for slower-developing “conventional” droughts. In this essay, we describe an integrated research-and-applications agenda that emphasizes the need to reconceptualize our understanding of flash drought within existing drought early warning systems by focusing on opportunities to improve monitoring and prediction. We illustrate the need for engagement among physical scientists, social scientists, operational monitoring and forecast centers, practitioners, and policy-makers to inform how they view, monitor, predict, plan for, and respond to flash drought. We discuss five related topics that together constitute the pillars of a robust flash drought early warning system, including the development of 1) a physically based identification framework, 2) comprehensive drought monitoring capabilities, and 3) improved prediction over various time scales that together 4) aid impact assessments and 5) guide decision-making and policy. We provide specific recommendations to illustrate how this fivefold approach could be used to enhance decision-making capabilities of practitioners, develop new areas of research, and provide guidance to policy-makers attempting to account for flash drought in drought preparedness and response plans.
Abstract
This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force (DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current understanding of North American drought and key research gaps. Results from the DTF papers indicate that key successes for drought monitoring include the application of modern land surface hydrological models that can be used for objective drought analysis, including extended retrospective forcing datasets to support hydrologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in the papers include the development of the North American Multimodel Ensemble (NMME) suite of seasonal model forecasts, an established basis for the importance of La Niña in drought events over the southern Great Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite such progress, there are still important limitations in our ability to predict various aspects of drought, including onset, duration, severity, and recovery. Critical challenges include (i) the development of objective, science-based integration approaches for merging multiple information sources; (ii) long, consistent hydrometeorological records to better characterize drought; and (iii) extending skillful precipitation forecasts beyond a 1-month lead time.
Abstract
This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force (DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current understanding of North American drought and key research gaps. Results from the DTF papers indicate that key successes for drought monitoring include the application of modern land surface hydrological models that can be used for objective drought analysis, including extended retrospective forcing datasets to support hydrologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in the papers include the development of the North American Multimodel Ensemble (NMME) suite of seasonal model forecasts, an established basis for the importance of La Niña in drought events over the southern Great Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite such progress, there are still important limitations in our ability to predict various aspects of drought, including onset, duration, severity, and recovery. Critical challenges include (i) the development of objective, science-based integration approaches for merging multiple information sources; (ii) long, consistent hydrometeorological records to better characterize drought; and (iii) extending skillful precipitation forecasts beyond a 1-month lead time.
Abstract
The 2017 flash drought arrived without early warning and devastated the U.S. northern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental health. These effects motivated a multiagency collaboration among academic, tribal, state, and federal partners to evaluate drought early warning systems, coordination efforts, communication, and management practices with the goal of improving resilience and response to future droughts. This essay provides an overview on the causes, predictability, and historical context of the drought, the impacts of the drought, opportunities for drought early warning, and an inventory of lessons learned. Key lessons learned include the following: 1) building partnerships during nondrought periods helps ensure that proper relationships are in place for a coordinated and effective drought response; 2) drought information providers must improve their understanding of the annual decision cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors; and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given that seasonal forecasts lack skill over the northern Great Plains.
Abstract
The 2017 flash drought arrived without early warning and devastated the U.S. northern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental health. These effects motivated a multiagency collaboration among academic, tribal, state, and federal partners to evaluate drought early warning systems, coordination efforts, communication, and management practices with the goal of improving resilience and response to future droughts. This essay provides an overview on the causes, predictability, and historical context of the drought, the impacts of the drought, opportunities for drought early warning, and an inventory of lessons learned. Key lessons learned include the following: 1) building partnerships during nondrought periods helps ensure that proper relationships are in place for a coordinated and effective drought response; 2) drought information providers must improve their understanding of the annual decision cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors; and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given that seasonal forecasts lack skill over the northern Great Plains.
Decadal Prediction
Can It Be Skillful?
A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.
A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.