Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Rohit Mathur x
  • Refine by Access: All Content x
Clear All Modify Search
Kiran Alapaty, Rohit Mathur, and Talat Odman

Abstract

Two geometrical and two advection-equivalent spatial interpolation schemes were tested in providing lateral boundary conditions to a nested grid domain. Geometric interpolation schemes used in this study are a zeroth- order and a quadratic scheme, while the two advection-equivalent interpolation schemes were based on upwind and Bott’s advection schemes. The test problem involves an initially cone-shaped distribution of a scalar advected from a coarse to a fine grid. Simulation results were compared to the exact solution to study magnitude and phase characteristics of each scheme. Results indicated that Bott’s advection-equivalent interpolation scheme provided better interface conditions and, consequently, a more accurate transition of the signal from a coarse to a fine grid.

Full access
Daiwen Kang, Rohit Mathur, Kenneth Schere, Shaocai Yu, and Brian Eder

Abstract

Traditional categorical metrics used in model evaluations are “clear cut” measures in that the model’s ability to predict an “exceedance” is defined by a fixed threshold concentration and the metrics are defined by observation–forecast sets that are paired both in space and time. These metrics are informative but limited in evaluating the performance of air quality forecast (AQF) systems because AQF generally examines exceedances on a regional scale rather than a single monitor. New categorical metrics—the weighted success index (WSI), area hit (aH), and area false-alarm ratio (aFAR)—are developed. In the calculation of WSI, credits are given to the observation–forecast pairs within the observed exceedance region (missed forecast) or the forecast exceedance region (false alarm), depending on the distance of the points from the central line (perfect observation–forecast match line or 1:1 line on scatterplot). The aH and aFAR are defined by matching observed and forecast exceedances within an area (i.e., model grid cells) surrounding the observation location. The concept of aH and aFAR resembles the manner in which forecasts are usually issued. In practice, a warning is issued for a region of interest, such as a metropolitan area, if an exceedance is forecast to occur anywhere within the region. The application of these new categorical metrics, which are supplemental to the traditional counterparts (critical success index, hit rate, and false-alarm ratio), to the Eta Model–Community Multiscale Air Quality (CMAQ) forecast system has demonstrated further insight into evaluating the forecasting capability of the system (e.g., the new metrics can provide information about how the AQF system captures the spatial variations of pollutant concentrations).

Full access
Jonathan Pleim, Rohit Mathur, S. T. Rao, Jerome Fast, and Alexander Baklanov
Full access
Alexander Baklanov, Dominik Brunner, Gregory Carmichael, Johannes Flemming, Saulo Freitas, Michael Gauss, Øystein Hov, Rohit Mathur, K. Heinke Schlünzen, Christian Seigneur, and Bernhard Vogel

Abstract

Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can consider both the effects of meteorology on air quality and the potentially important effects of atmospheric composition on weather. This paper summarizes the main conclusions from the “Symposium on Coupled Chemistry–Meteorology/Climate Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research,” which was initiated by the European COST Action ES1004 “European Framework for Online Integrated Air Quality and Meteorology Modelling (EuMetChem).” It offers a brief review of the current status of online coupled meteorology and atmospheric chemistry modeling and a survey of processes relevant to the interactions between atmospheric physics, dynamics, and composition. In addition, it highlights scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for three main application areas: air quality, meteorology (including weather prediction), and climate modeling. It presents a synthesis of scientific progress in the form of answers to nine key questions, and provides recommendations for future research directions and priorities in the development, application, and evaluation of online coupled models.

Open access
Brian Eder, Daiwen Kang, S. Trivikrama Rao, Rohit Mathur, Shaocai Yu, Tanya Otte, Ken Schere, Richard Wayland, Scott Jackson, Paula Davidson, Jeff McQueen, and George Bridgers

The National Air Quality Forecast Capability (NAQFC) currently provides next-day forecasts of ozone concentrations over the contiguous United States. It was developed collaboratively by NOAA and Environmental Protection Agency (EPA) in order to provide state and local agencies, as well as the general public, air quality forecast guidance. As part of the development process, the NAQFC has been evaluated utilizing strict monitor-to-gridcell matching criteria, and discrete-type statistics of forecast concentrations. While such an evaluation is important to the developers, it is equally, if not more important, to evaluate the performance using the same protocol as the model's intended application. Accordingly, the purpose of this article is to demonstrate the efficacy of the NAQFC from the perspective of a local forecaster, thereby promoting its use. Such an approach has required the development of a new evaluation protocol: one that examines the ability of the NAQFC to forecast values of the EPA's Air Quality Index (AQI) rather than ambient air concentrations; focuses on the use of categorical-type statistics related to exceedances and nonexceedances; and, most challenging, examines performance, not based on matched grid cells and monitors, but rather over a “local forecast region,” such as an air shed or metropolitan statistical area (MSA). Results from this approach, which is demonstrated for the Charlotte, North Carolina, MSA and subsequently applied to four additional MSAs during the summer of 2007, reveal that the quality of the NAQFC forecasts is generally comparable to forecasts from local agencies. Such findings will hopefully persuade forecasters, whether they are experienced with numerous tools at their disposal or inexperienced with limited resources, to utilize the NAQFC as forecast guidance.

Full access
Tanya L. Otte, George Pouliot, Jonathan E. Pleim, Jeffrey O. Young, Kenneth L. Schere, David C. Wong, Pius C. S. Lee, Marina Tsidulko, Jeffery T. McQueen, Paula Davidson, Rohit Mathur, Hui-Ya Chuang, Geoff DiMego, and Nelson L. Seaman

Abstract

NOAA and the U.S. Environmental Protection Agency (EPA) have developed a national air quality forecasting (AQF) system that is based on numerical models for meteorology, emissions, and chemistry. The AQF system generates gridded model forecasts of ground-level ozone (O3) that can help air quality forecasters to predict and alert the public of the onset, severity, and duration of poor air quality conditions. Although AQF efforts have existed in metropolitan centers for many years, this AQF system provides a national numerical guidance product and the first-ever air quality forecasts for many (predominantly rural) areas of the United States. The AQF system is currently based on NCEP’s Eta Model and the EPA’s Community Multiscale Air Quality (CMAQ) modeling system. The AQF system, which was implemented into operations at the National Weather Service in September of 2004, currently generates twice-daily forecasts of O3 for the northeastern United States at 12-km horizontal grid spacing. Preoperational testing to support the 2003 and 2004 O3 forecast seasons showed that the AQF system provided valuable guidance that could be used in the air quality forecast process. The AQF system will be expanded over the next several years to include a nationwide domain, a capability for forecasting fine particle pollution, and a longer forecast period. State and local agencies will now issue air quality forecasts that are based, in part, on guidance from the AQF system. This note describes the process and software components used to link the Eta Model and CMAQ for the national AQF system, discusses several technical and logistical issues that were considered, and provides examples of O3 forecasts from the AQF system.

Full access