Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Ron F. Hopkinson x
  • Refine by Access: All Content x
Clear All Modify Search
Ron F. Hopkinson, Michael F. Hutchinson, Daniel W. McKenney, Ewa J. Milewska, and Pia Papadopol

Abstract

Spatial models of 1971–2000 monthly climate normals for daily maximum and minimum temperature and total precipitation are required for many applications. The World Meteorological Organization’s recommended standard for the calculation of a normal value is a complete 30-yr record with a minimal amount of missing data. Only 650 stations (~16%) in Canada meet this criterion for the period 1971–2000. Thin-plate smoothing-spline analyses, as implemented by the Australian National University Splines (ANUSPLIN) package, are used to assess the utility of differing amounts of station data in estimating nationwide monthly climate normals. The data include 1) only those stations (1169) with 20 or more years of data, 2) all stations (3835) with 5 or more years of data in at least one month, and 3) as in case 2 but with data adjusted through the most statistically significant linear-regression relationship with a nearby long-term station to 20 or more years (3983 stations). Withheld-station tests indicate that the regression-adjusted normals as in dataset 3 generally yield the best results for all three climatological elements, but the unadjusted normals as in dataset 2 are competitive with the adjusted normals in spring and autumn, reflecting the known longer spatial correlation scales in these seasons. The summary mean absolute differences between the ANUSPLIN estimates and the observations at 48 spatially representative withheld stations for dataset 3 are 0.36°C, 0.66°C, and 4.7 mm, respectively, for maximum temperature, minimum temperature, and precipitation. These are respectively 18%, 7%, and 18% smaller than the summary mean absolute differences for the long-term normals in dataset 1.

Full access
Michael F. Hutchinson, Dan W. McKenney, Kevin Lawrence, John H. Pedlar, Ron F. Hopkinson, Ewa Milewska, and Pia Papadopol

Abstract

The application of trivariate thin-plate smoothing splines to the interpolation of daily weather data is investigated. The method was used to develop spatial models of daily minimum and maximum temperature and daily precipitation for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude, for the period 1961–2003. Each daily model was optimized automatically by minimizing the generalized cross validation. The fitted trivariate splines incorporated a spatially varying dependence on ground elevation and were able to adapt automatically to the large variation in station density over Canada. Extensive quality control measures were performed on the source data. Error estimates for the fitted surfaces based on withheld data across southern Canada were comparable to, or smaller than, errors obtained by daily interpolation studies elsewhere with denser data networks. Mean absolute errors in daily maximum and minimum temperature averaged over all years were 1.1° and 1.6°C, respectively. Daily temperature extremes were also well matched. Daily precipitation is challenging because of short correlation length scales, the preponderance of zeros, and significant error associated with measurement of snow. A two-stage approach was adopted in which precipitation occurrence was estimated and then used in conjunction with a surface of positive precipitation values. Daily precipitation occurrence was correctly predicted 83% of the time. Withheld errors in daily precipitation were small, with mean absolute errors of 2.9 mm, although these were relatively large in percentage terms. However, mean percent absolute errors in seasonal and annual precipitation totals were 14% and 9%, respectively, and seasonal precipitation upper 95th percentiles were attenuated on average by 8%. Precipitation and daily maximum temperatures were most accurately interpolated in the autumn, consistent with the large well-organized synoptic systems that prevail in this season. Daily minimum temperatures were most accurately interpolated in summer. The withheld data tests indicate that the models can be used with confidence across southern Canada in applications that depend on daily temperature and accumulated seasonal and annual precipitation. They should be used with care in applications that depend critically on daily precipitation extremes.

Full access
Ron F. Hopkinson, Daniel W. McKenney, Ewa J. Milewska, Michael F. Hutchinson, Pia Papadopol, and Lucie A. Vincent

Abstract

On 1 July 1961, the climatological day was redefined to end at 0600 UTC at all principal climate stations in Canada. Prior to that, the climatological day at principal stations ended at 1200 UTC for maximum temperature and precipitation and 0000 UTC for minimum temperature and was similar to the climatological day at ordinary stations. Hutchinson et al. reported occasional larger-than-expected residuals at 50 withheld stations when the Australian National University Spline (ANUSPLIN) interpolation scheme was applied to daily data for 1961–2003, and it was suggested that these larger residuals were in part due to the existence of different climatological days. In this study, daily minimum and maximum temperatures at principal stations were estimated using hourly temperatures for the same climatological day as local ordinary climate stations for the period 1953–2007. Daily precipitation was estimated at principal stations using synoptic precipitation data for the climatological day ending at 1200 UTC, which, for much of the country, was close to the time of the morning observation at ordinary climate stations. At withheld principal stations, the climatological-day adjustments led to the virtual elimination of large residuals in maximum and minimum temperature and a marked reduction in precipitation residuals. Across all 50 withheld stations the climatological day adjustments led to significant reductions, by around 12% for daily maximum temperature, 15% for daily minimum temperature, and 22% for precipitation, in the residuals reported by Hutchinson et al.

Full access
Daniel W. McKenney, Michael F. Hutchinson, Pia Papadopol, Kevin Lawrence, John Pedlar, Kathy Campbell, Ewa Milewska, Ron F. Hopkinson, David Price, and Tim Owen

Over the past two decades, researchers at Natural Resources Canada's Canadian Forest Service, in collaboration with the Australian National University (ANU), Environment Canada (EC), and the National Oceanic and Atmospheric Administration (NOAA), have made a concerted effort to produce spatial climate products (i.e., spatial models and grids) covering both Canada and the United States for a wide variety of climate variables and time steps (from monthly to daily), and across a range of spatial resolutions. Here we outline the method used to generate the spatial models, detail the array of products available and how they may be accessed, briefly describe some of the usage and impact of the models, and discuss anticipated further developments. Our initial motivation in developing these models was to support forestry-related applications. They have since been utilized by a wider range of agencies and researchers. This article is intended to further raise awareness of the strengths and weaknesses of these climate models and to facilitate their wider application.

Full access