Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Ronald Calhoun x
  • Refine by Access: All Content x
Clear All Modify Search
Ching-Long Lin
,
Quanxin Xia
, and
Ronald Calhoun

Abstract

The proper orthogonal decomposition technique is applied to 74 snapshots of 3D wind and temperature fields to study turbulent coherent structures and their interplay in the urban boundary layer over Oklahoma City, Oklahoma. These snapshots of data are extracted from single-lidar data via a four-dimensional variational data assimilation technique. The total velocities and fluctuating temperature are used to construct the data matrix for the decomposition; thus the first eigenmode represents the temporal mean of these data. Roll vortices with a wavelength–height ratio of 3.2 are identified in the first, most energetic eigenmode and are attributed to the inflection-point instability. The second and third spatial eigenmodes also exhibit roll characteristics with different time and length scales, resulting in clockwise- and counterclockwise-rotating roll vortices above the airport and the central business districts. Their positive correlation with temperature fluctuation suggests that those roll structures are driven by thermal as well as wind shear. Their limited horizontal extent seems to coincide with the path of the Oklahoma River. With decreasing rank, coherent structures undergo a transition from roll to polygon patterns. A localized downdraft or updraft located above a cluster of restaurants is captured by the fourth eigenmode. In the capping inversion layer, gravity wave eigenmodes are observed and may be attributed to convection waves. The representation of instantaneous snapshots by high-ranking eigenmodes is then examined by reconstruction of reduced-order fields. It is found that the first four eigenmodes are sufficient to capture the overall characteristics of the 74 snapshots of data.

Full access
Christina Stawiarski
,
Katja Träumner
,
Christoph Knigge
, and
Ronald Calhoun

Abstract

Pulsed Doppler lidars are powerful tools for long-range, high-resolution measurements of radial wind velocities. With the development of commercial Doppler lidars and the reduction of acquisition costs, dual-Doppler lidar systems will be become increasingly accessible in upcoming years. This study reviews the most common dual-Doppler techniques, describes the setup of a highly synchronized long-range dual-Doppler lidar system, and discusses extensively the different kinds of errors connected with this complex measurement technique. Sources of errors and their interactions are traced through the retrieval algorithm, including errors from single-Doppler lidar and those occurring from a combination of instruments related to various parameters, such as relative beam angles, time and spatial scales of the scan pattern, and atmospheric conditions.

Full access
Quanxin Xia
,
Ching-Long Lin
,
Ronald Calhoun
, and
Rob K. Newsom

Abstract

Two coherent Doppler lidars from the U.S. Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City, Oklahoma. The dual-lidar data were used to evaluate the accuracy of a four-dimensional variational data assimilation (4DVAR) method and to identify the coherent flow structures in the urban boundary layer. The objectives of the study are threefold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to inspect flow structures above some geospatial features on the land surface. It is found that the approach of treating eddy viscosity as part of the control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80%–90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90%–94% of the ASU radial velocity data. By using the dual-lidar-retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70%–80% accuracy in the along-beam direction and 60%–70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of the downtown airport and parks. Vortical structures are identified near the business district. Strong up- and downdrafts are also found above a cluster of restaurants.

Full access
Susanne Drechsel
,
Georg J. Mayr
,
Michel Chong
,
Martin Weissmann
,
Andreas Dörnbrack
, and
Ronald Calhoun

Abstract

During the field campaign of the Terrain-induced Rotor Experiment (T-REX) in the spring of 2006, Doppler lidar measurements were taken in the complex terrain of the Californian Owens Valley for six weeks. While fast three-dimensional (3D) wind analysis from measured radial wind components is well established for dual weather radars, only the feasibility was shown for dual-Doppler lidars. A computationally inexpensive, variational analysis method developed for multiple-Doppler radar measurements over complex terrain was applied. The general flow pattern of the 19 derived 3D wind fields is slightly smoothed in time and space because of lidar scan duration and analysis algorithm. The comparison of extracted wind profiles to profiles from radiosondes and wind profiler reveals differences of wind speed and direction of less than 1.1 m s−1 and 3°, on average, with standard deviations not exceeding 2.7 m s−1 and 27°, respectively. Standard velocity–azimuth display (VAD) retrieval method provided higher vertical resolution than the dual-Doppler retrieval, but no horizontal structure of the flow field. The authors suggest a simple way to obtain a good first guess for a dual-lidar scan strategy geared toward 3D wind retrieval that minimizes scan duration and maximizes spatial coverage.

Full access
Nihanth W. Cherukuru
,
Ronald Calhoun
,
Tim Scheitlin
,
Matt Rehme
, and
Raghu Raj Prasanna Kumar

Abstract

Mixed reality taps into intuitive human perception by merging computer-generated views of digital objects (or flow fields) with natural views. Digital objects can be positioned in 3D space and can mimic real objects in the sense that walking around the object produces smoothly changing views toward the other side. Only recently have advances in gaming graphics advanced to the point that views of moving 3D digital objects can be calculated in real time and displayed together with digital video streams. Auxiliary information can be positioned and timed to give the viewer a deeper understanding of a scene; for example, a pilot landing an aircraft might “see” zones of shear or decaying vortices from previous heavy aircraft. A rotating digital globe might be displayed on a table top to demonstrate the evolution of El Niño. In this article, the authors explore a novel mixed reality data visualization application for atmospheric science data, present the methodology using game development platforms, and demonstrate a few applications to help users quickly and intuitively understand evolving atmospheric phenomena.

Full access
Ronald Calhoun
,
Frank Gouveia
,
Joseph Shinn
,
Stevens Chan
,
Dave Stevens
,
Robert Lee
, and
John Leone

Abstract

A field program to study atmospheric releases around a complex building was performed in the summers of 1999 and 2000. The focus of this paper is to compare field data with a large-eddy simulation (LES) code to assess the ability of the LES approach to yield additional insight into atmospheric release scenarios. In particular, transient aspects of the velocity and concentration signals are studied. The simulation utilized the finite-element method with a high-fidelity representation of the complex building. Trees were represented with a canopy term in the momentum equation. Inflow and outflow conditions were used. The upwind velocity was constructed from a logarithmic law fitted to velocities obtained on two levels from a tower equipped with a 2D sonic anemometer. A number of different kinds of comparisons of the transient velocity and concentration signals are presented—direct signal versus time, spectral, Reynolds stresses, turbulent kinetic energy signals, and autocorrelations. It is concluded that the LES approach does provide additional insight, but the authors argue that the proper use of LES should include consideration of cost and may require an increased connection to field sensors; that is, higher-resolution boundary and initial conditions need to be provided to realize the full potential of LES.

Full access
Ronald Calhoun
,
Frank Gouveia
,
Joseph Shinn
,
Stevens Chan
,
Dave Stevens
,
Robert Lee
, and
John Leone

Abstract

An experiment investigating flow around a single complex building was performed in 2000. Sonic anemometers were placed around the building, and two-dimensional wind velocities were recorded. An energy-budget and wind-measuring station was located upstream to provide stability and inflow conditions. In general, the sonic anemometers were located in a horizontal plane around the building at a height of 2.6 m above the ground. However, at the upwind wind station, two levels of the wind were measured. The resulting database can be sampled to produce mean wind fields associated with specific wind directions such as 210°, 225°, and 240°. The data are available generally and should be useful for testing computational fluid dynamical models for flow around a building. An in-house Reynolds-averaged Navier–Stokes approach was used to compare with the mean wind fields for the predominant wind directions. The numerical model assumed neutral flow and included effects from a complex array of trees in the vicinity of the building. Two kinds of comparisons are presented: 1) direct experimental versus modeled vector comparisons and 2) a numerical metric approach that focuses on wind magnitude and direction errors. The numerical evaluation generally corroborates the vector-to-vector inspection, showing reasonable agreement for the mean wind fields around the building. However, regions with special challenges for the model were identified. In particular, recirculation regions were especially difficult for the model to capture correctly. In the 240° case, there is a tendency for the model to exaggerate the turning effect in the wind caused by the effect of the building. Two different kinds of simulations were performed: 1) predictive calculations with a reasonable but not high-fidelity representation of the building's architectural complexity and 2) postexperiment calculations in which a large number of architectural features were well represented. Although qualitative evidence from inspection of the angles of the vectors in key areas such as around the southeast corner of the building indicated an improvement from the higher-fidelity representation of the building, the general numerical evaluation indicated little difference in the quality of the two solutions.

Full access
Yansen Wang
,
Cheryl L. Klipp
,
Dennis M. Garvey
,
David A. Ligon
,
Chatt C. Williamson
,
Sam S. Chang
,
Rob K. Newsom
, and
Ronald Calhoun

Abstract

Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25–100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%–15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

Full access
Manuela Lehner
,
C. David Whiteman
,
Sebastian W. Hoch
,
Erik T. Crosman
,
Matthew E. Jeglum
,
Nihanth W. Cherukuru
,
Ronald Calhoun
,
Bianca Adler
,
Norbert Kalthoff
,
Richard Rotunno
,
Thomas W. Horst
,
Steven Semmer
,
William O. J. Brown
,
Steven P. Oncley
,
Roland Vogt
,
A. Martina Grudzielanek
,
Jan Cermak
,
Nils J. Fonteyne
,
Christian Bernhofer
,
Andrea Pitacco
, and
Petra Klein

Abstract

The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.

Full access
Edward G. Patton
,
Thomas W. Horst
,
Peter P. Sullivan
,
Donald H. Lenschow
,
Steven P. Oncley
,
William O. J. Brown
,
Sean P. Burns
,
Alex B. Guenther
,
Andreas Held
,
Thomas Karl
,
Shane D. Mayor
,
Luciana V. Rizzo
,
Scott M. Spuler
,
Jielun Sun
,
Andrew A. Turnipseed
,
Eugene J. Allwine
,
Steven L. Edburg
,
Brian K. Lamb
,
Roni Avissar
,
Ronald J. Calhoun
,
Jan Kleissl
,
William J. Massman
,
Kyaw Tha Paw U
, and
Jeffrey C. Weil

The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile tower instrumented with turbulence instrumentation, fast and slow chemical sensors, aerosol samplers, and radiation instrumentation. A highresolution scanning backscatter lidar characterized the turbulence structure above and within the canopy; a scanning Doppler lidar, mini sodar/radio acoustic sounding system (RASS), and a new helicopter-observing platform provided details of the PBL-scale flow. Ultimately, the CHATS dataset will lead to improved parameterizations of energy and scalar transport to and from vegetation, which are a critical component of global and regional land, atmosphere, and chemical models. This manuscript presents an overview of the experiment, documents the regime sampled, and highlights some preliminary key findings.

Full access