Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Ronald J. Ferek x
  • Refine by Access: All Content x
Clear All Modify Search
Ronald J. Ferek, Barrett P. Eynon, and Roy M. Endlich

Abstract

The relationships between acidity and the principal chemical constituents of precipitation (including sulfate, nitrate, ammonium, calcium, magnesium, sodium, and chloride) were investigated using a new archive of daily precipitation chemistry measurements for the eastern United States. This archive consist of measurements from three networks during the period 1979 through 1983. The chemical relationships between acidity (hydrogen ion concentrations) and the other chemical constituents were studied using six sites that span the eastern United States and represent geographic variations. At these sites, the two predominant cations were hydrogen and ammonium, and the predominant anions were sulfate and nitrate; these four largely controlled the ionic balance, particularly at locations where the precipitation was most acidic. When other less predominant analytes (sodium, magnesium, potassium, chloride, and phosphate) were also considered, the average ionic balance indicated an apparent excess of cations relative to anions. This imbalance arose either from a bias in the measurement of cations, or from anions (such as organic acids) that were not measured. At all sites, there was wide variability from day to day in the concentrations of all analytes. For example, the relative amounts of the four predominant analytes changed substantially from storm to storm. This variability indicates that air mass trajectories over emission sources, and variations in chemical processes and meteorological conditions, interacted in complex ways to produce the observed constituent concentrations.

Full access
Dean A. Hegg, Ronald J. Ferek, and Peter V. Hobbs

Abstract

Cloud condensation nucleus (CCN) spectral data are presented for the Arctic in spring, which considerably augment the existing meager CCN database for the Arctic. Concurrent measurements of sulfate mass suggest that men of the CCN were commonly not sulfate. Sulfate was more closely associated with particles below the CCN size range. Some measurements of the microphysical structure of Arctic status clouds are aim described.

Full access
Dean A. Hegg, Peter V. Hobbs, Ronald J. Ferek, and Alan P. Waggoner

Abstract

Airborne measurements of aerosol light-scattering efficiencies are presented for a portion of the northeast Atlantic seaboard of the United State during July 1993. The measurements suggest a value for the sulfate light-scattering efficiency in the range 2.2–3.2 m2 g−1, which is lower than the value used in recent modeling assessments of the climate impact of aerosols. In general the sulfate light-scattering efficiency decreased with increasing altitude in a manner consistent with concurrent measurements of aerosol size distributions. Some limited measurements of cloud condensation nuclei and sea-salt particles are also presented.

Full access
Lynn M. Russell, Kevin J. Noone, Ronald J. Ferek, Robert A. Pockalny, Richard C. Flagan, and John H. Seinfeld

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided an opportunity to acquire data on the role of organic compounds in ambient clouds and in ship tracks identified in satellite images. Identification of PAHs in cloud droplet residual samples indicates that several PAHs are present in cloud condensation nuclei in anthropogenically influenced air and do result in activated droplets in cloud. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the cloud condensation nuclei that activate in cloud. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in cloud droplets rather than in the unactivated aerosol and the compound’s water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.

Full access
Andrew S. Ackerman, Owen B. Toon, Jonathan P. Taylor, Doug W. Johnson, Peter V. Hobbs, and Ronald J. Ferek

Abstract

Airborne measurements from the Meteorological Research Flight’s Hercules C-130 and the University of Washington’s Convair C-131A during the Monterey Area Ship Track field project are used to evaluate Twomey’s analytic expression for cloud susceptibility, which describes the sensitivity of cloud albedo to changes in droplet concentrations. This expression incorporates assumptions about cloud physics, such as the independence of the cloud liquid water content and the width of the droplet size distribution on droplet concentrations. Averaged over all 69 ship track penetrations, cloud liquid water content decreased slightly and the droplet size distributions broadened from the ambient values. For the 17 cases for which albedos were measured during overflights, Twomey’s parameterization represents the trend of albedo changes with droplet concentrations remarkably well, passing through the midpoints of the considerable spread in the data. The fortuitous agreement results from compensating changes in cloud properties. Together with the albedo changes, the changes in cloud liquid water content and droplet size distributions imply that cloud thickness usually increased in the ship tracks. Such an increase was observed on the occasions that changes in cloud thickness were recorded (in the Sanko Peace ship track during very clean ambient conditions). Unfortunately systematic measurements of cloud thickness were not made for most of the ship tracks observed. The greatest outlier in the data corresponds to measurements made under horizontally inhomogeneous ambient conditions; possible explanations for its divergence include an increase in cloud thickness or an error in matching above-cloud albedo measurements with in-cloud microphysics measurements.

Full access
Jonathan P. Taylor, Martin D. Glew, James A. Coakley Jr., William R. Tahnk, Steven Platnick, Peter V. Hobbs, and Ronald J. Ferek

Abstract

The influence of anthropogenic aerosols, in the form of ship exhaust effluent, on the microphysics and radiative properties of marine stratocumulus is studied using data gathered from the U.K. Met. Office C-130 and the University of Washington C-131A aircraft during the Monterey Area Ship Track (MAST) experiment in 1994. During the period of MAST, stratocumulus clouds were studied during 11 flights and a wide range of levels of background pollution was observed. The impact of the aerosol emitted from the ships was found to be very dependent on the background cloud microphysical conditions. In clouds of continental influence, the susceptibility of the cloud to further aerosol emissions was low, with a correspondingly weak microphysics and radiation signature in the ship tracks. In clean clouds, changes in droplet concentration of a factor of 2, and reductions in droplet size of up to 50%, were measured. These changes in the microphysics had significant impacts on the cloud radiative forcing. Furthermore, as a result of the cloud droplet size being reduced, in some cases the drizzle was suppressed in the clean clouds, resulting in an increase in liquid water path in the polluted ship track environment. The impact of this combined change in liquid water path and droplet radius was to increase the cloud radiative forcing by up to a factor of 4.

Full access
Ronald J. Ferek, Timothy Garrett, Peter V. Hobbs, Scott Strader, Doug Johnson, Jonathan P. Taylor, Kurt Nielsen, Andrew S. Ackerman, Yefim Kogan, Qingfu Liu, Bruce A. Albrecht, and David Babb

Abstract

Although drizzle was a relatively infrequent occurrence during the Monterey Area Ship Track study, diverse measurements from several sources produced data signals consistent with a reduction in drizzle drops in stratus clouds affected by ship effluents. Concurrent increases in liquid water in the cloud droplet size range, due to redistribution from the drizzle mode, were not always observed, possibly because of the relatively small and often negligible amounts of water in the drizzle mode. Significant changes in cloud droplet size distribution, as well as reductions in drizzle flux and concentrations of drops >50-μm radius, were observed in ship tracks when drizzle was more uniformly present in the ambient cloud.

Radiometric measurements showed that increased droplet concentrations in ship tracks, which resulted in reduced droplet sizes, can significantly alter the liquid water path. Radar observations indicated that the reduced reflectivities of ship tracks compared with ambient clouds may be due to reductions in the concentrations of larger drops and/or reductions in the sizes of these drops. Two independent modeling studies showed decreases in drizzle in ship tracks due to the presence of smaller cloud droplets that reduced the efficiency of drop growth by collisions.

Full access
Peter V. Hobbs, Timothy J. Garrett, Ronald J. Ferek, Scott R. Strader, Dean A. Hegg, Glendon M. Frick, William A. Hoppel, Richard F. Gasparovic, Lynn M. Russell, Douglas W. Johnson, Colin O’Dowd, Philip A. Durkee, Kurt E. Nielsen, and George Innis

Abstract

Emissions of particles, gases, heat, and water vapor from ships are discussed with respect to their potential for changing the microstructure of marine stratiform clouds and producing the phenomenon known as “ship tracks.” Airborne measurements are used to derive emission factors of SO2 and NO from diesel-powered and steam turbine-powered ships, burning low-grade marine fuel oil (MFO); they were ∼15–89 and ∼2–25 g kg−1 of fuel burned, respectively. By contrast a steam turbine–powered ship burning high-grade navy distillate fuel had an SO2 emission factor of ∼6 g kg−1.

Various types of ships, burning both MFO and navy distillate fuel, emitted from ∼4 × 1015 to 2 × 1016 total particles per kilogram of fuel burned (∼4 × 1015–1.5 × 1016 particles per second). However, diesel-powered ships burning MFO emitted particles with a larger mode radius (∼0.03–0.05 μm) and larger maximum sizes than those powered by steam turbines burning navy distillate fuel (mode radius ∼0.02 μm). Consequently, if the particles have similar chemical compositions, those emitted by diesel ships burning MFO will serve as cloud condensation nuclei (CCN) at lower supersaturations (and will therefore be more likely to produce ship tracks) than the particles emitted by steam turbine ships burning distillate fuel. Since steam turbine–powered ships fueled by MFO emit particles with a mode radius similar to that of diesel-powered ships fueled by MFO, it appears that, for given ambient conditions, the type of fuel burned by a ship is more important than the type of ship engine in determining whether or not a ship will produce a ship track. However, more measurements are needed to test this hypothesis.

The particles emitted from ships appear to be primarily organics, possibly combined with sulfuric acid produced by gas-to-particle conversion of SO2. Comparison of model results with measurements in ship tracks suggests that the particles from ships contain only about 10% water-soluble materials. Measurements of the total particles entering marine stratiform clouds from diesel-powered ships fueled by MFO, and increases in droplet concentrations produced by these particles, show that only about 12% of the particles serve as CCN.

The fluxes of heat and water vapor from ships are estimated to be ∼2–22 MW and ∼0.5–1.5 kg s−1, respectively. These emissions rarely produced measurable temperature perturbations, and never produced detectable perturbations in water vapor, in the plumes from ships. Nuclear-powered ships, which emit heat but negligible particles, do not produce ship tracks. Therefore, it is concluded that heat and water vapor emissions do not play a significant role in ship track formation and that particle emissions, particularly from those burning low-grade fuel oil, are responsible for ship track formation. Subsequent papers in this special issue discuss and test these hypotheses.

Full access
Kevin J. Noone, Doug W. Johnson, Jonathan P. Taylor, Ronald J. Ferek, Tim Garrett, Peter V. Hobbs, Philip A. Durkee, Kurt Nielsen, Elisabeth Öström, Colin O’Dowd, Michael H. Smith, Lynn M. Russell, Richard C. Flagan, John H. Seinfeld, Lieve De Bock, René E. Van Grieken, James G. Hudson, Ian Brooks, Richard F. Gasparovic, and Robert A. Pockalny

Abstract

A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.

The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

Full access
Kevin J. Noone, Elisabeth Öström, Ronald J. Ferek, Tim Garrett, Peter V. Hobbs, Doug W. Johnson, Jonathan P. Taylor, Lynn M. Russell, Richard C. Flagan, John H. Seinfeld, Colin D. O’Dowd, Michael H. Smith, Philip A. Durkee, Kurt Nielsen, James G. Hudson, Robert A. Pockalny, Lieve De Bock, René E. Van Grieken, Richard F. Gasparovic, and Ian Brooks

Abstract

The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03–0.3-μm radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.

The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.

Full access