Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Roy K. Woods x
  • Refine by Access: All Content x
Clear All Modify Search
Ewan Crosbie
,
Zhen Wang
,
Armin Sorooshian
,
Patrick Y. Chuang
,
Jill S. Craven
,
Matthew M. Coggon
,
Michael Brunke
,
Xubin Zeng
,
Haflidi Jonsson
,
Roy K. Woods
,
Richard C. Flagan
, and
John H. Seinfeld

Abstract

Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings.

Full access
Andrew M. Vogelmann
,
Greg M. McFarquhar
,
John A. Ogren
,
David D. Turner
,
Jennifer M. Comstock
,
Graham Feingold
,
Charles N. Long
,
Haflidi H. Jonsson
,
Anthony Bucholtz
,
Don R. Collins
,
Glenn S. Diskin
,
Hermann Gerber
,
R. Paul Lawson
,
Roy K. Woods
,
Elisabeth Andrews
,
Hee-Jung Yang
,
J. Christine Chiu
,
Daniel Hartsock
,
John M. Hubbe
,
Chaomei Lo
,
Alexander Marshak
,
Justin W. Monroe
,
Sally A. McFarlane
,
Beat Schmid
,
Jason M. Tomlinson
, and
Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Full access
Qing Wang
,
Denny P. Alappattu
,
Stephanie Billingsley
,
Byron Blomquist
,
Robert J. Burkholder
,
Adam J. Christman
,
Edward D. Creegan
,
Tony de Paolo
,
Daniel P. Eleuterio
,
Harindra Joseph S. Fernando
,
Kyle B. Franklin
,
Andrey A. Grachev
,
Tracy Haack
,
Thomas R. Hanley
,
Christopher M. Hocut
,
Teddy R. Holt
,
Kate Horgan
,
Haflidi H. Jonsson
,
Robert A. Hale
,
John A. Kalogiros
,
Djamal Khelif
,
Laura S. Leo
,
Richard J. Lind
,
Iossif Lozovatsky
,
Jesus Planella-Morato
,
Swagato Mukherjee
,
Wendell A. Nuss
,
Jonathan Pozderac
,
L. Ted Rogers
,
Ivan Savelyev
,
Dana K. Savidge
,
R. Kipp Shearman
,
Lian Shen
,
Eric Terrill
,
A. Marcela Ulate
,
Qi Wang
,
R. Travis Wendt
,
Russell Wiss
,
Roy K. Woods
,
Luyao Xu
,
Ryan T. Yamaguchi
, and
Caglar Yardim

Abstract

The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.

Full access