Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rui M. A. Caldeira x
  • All content x
Clear All Modify Search
Vanda Grubišić, Johannes Sachsperger, and Rui M. A. Caldeira

Abstract

The island of Madeira is well known for giving rise to atmospheric wakes. Strong and unsteady atmospheric wakes, resembling a von Kármán vortex street, are frequently observed in satellite images leeward of Madeira, especially during summer months, when conditions favoring the formation of atmospheric wakes occur frequently under the influence of the Azores high.

Reported here is the analysis of the first airborne measurements of Madeira’s wake collected during the 2010 Island-induced Wake (I-WAKE) campaign. High-resolution in situ and remote sensing data were collected in the I-WAKE by a research aircraft. The measurements reveal distinctive wake signatures, including strong lateral wind shear zones and warm and dry eddies downwind of the island. A strong anticorrelation of the horizontal wind speed and sea surface temperature (SST) was found within the wake.

High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to study the dynamics of the wake generation and its temporal evolution. The comparison of the model results and observations reveals a remarkable fidelity of the simulated wake features within the marine boundary layer (MBL). Strong potential vorticity (PV) anomalies were found in the simulated MBL wake, emanating from the flanks of the island. The response of the wake formation within the MBL to surface friction and enhanced thermal forcing is explored through the model sensitivity analyses.

Full access
Cátia C. Azevedo, Carolina M. L. Camargo, José Alves, and Rui M. A. Caldeira

Abstract

The interaction between the incoming winds with high mountainous islands produces a wind-sheltered area in the leeward side, known as the atmospheric wake. In addition to weaker winds, the wake is also characterized by a clearing of clouds, resulting in intense solar radiation reaching the sea surface. As a consequence, a warm oceanic wake forms on the leeward side. This phenomenon detectable from space can extend 100 km offshore of Madeira, where the sea surface temperature can be 4⁰C higher than the surrounding oceanic waters. This study considers in-situ, remote sensing, and ocean circulation model data, to investigate the effects of the warm wake in the vertical structure of the upper ocean. To characterize the convective layer (25-70m) developing within the oceanic wake, 200 vertical profiles of temperature, salinity and turbulence were considered, together with the computation of the Density Ratio and Turner-angle. In comparison to the open-ocean water column, wake waters are strongly stratified with respect to temperature although highly unstable. The vertical profiles of salinity show distinct water parcels that sink and/or rise as a response to the intense heat fluxes. During the night, the ocean surface cools, leading to the stretching of the mixed layer which was replicated by the ocean circulation model. In exposed, non-wake regions however, particularly in the southeast and north coast of the island, the stretching of the mixed layer is not detectable.

Restricted access