Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Rui Shi x
  • All content x
Clear All Modify Search
Jia-Rui Shi, Shang-Ping Xie, and Lynne D. Talley

Abstract

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30°S) accounts for 72% ± 28% of global heat uptake, while the contribution from the North Atlantic north of 30°N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% ± 8% in the Southern Ocean and increase to 26% ± 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.

Open access
Jia-Rui Shi, Lynne D. Talley, Shang-Ping Xie, Wei Liu, and Sarah T. Gille

Abstract

Observations show that since the 1950s, the Southern Ocean has stored a large amount of anthropogenic heat and has freshened at the surface. These patterns can be attributed to two components of surface forcing: poleward-intensified westerly winds and increased buoyancy flux from freshwater and heat. Here we separate the effects of these two forcing components by using a novel partial-coupling technique. We show that buoyancy forcing dominates the overall response in the temperature and salinity structure of the Southern Ocean. Wind stress change results in changes in subsurface temperature and salinity that are closely related to intensified residual meridional overturning circulation. As an important result, we show that buoyancy and wind forcing result in opposing changes in salinity: the wind-induced surface salinity increase due to upwelling of saltier subsurface water offsets surface freshening due to amplification of the global hydrological cycle. Buoyancy and wind forcing further lead to different vertical structures of Antarctic Circumpolar Current (ACC) transport change; buoyancy forcing causes an ACC transport increase (3.1 ± 1.6 Sv; 1 Sv ≡ 106 m3 s−1) by increasing the meridional density gradient across the ACC in the upper 2000 m, while the wind-induced response is more barotropic, with the whole column transport increased by 8.7 ± 2.3 Sv. While previous research focused on the wind effect on ACC intensity, we show that surface horizontal current acceleration within the ACC is dominated by buoyancy forcing. These results shed light on how the Southern Ocean might change under global warming, contributing to more reliable future projections.

Open access
Weixing Zhang, Yidong Lou, Jennifer S. Haase, Rui Zhang, Gang Zheng, Jinfang Huang, Chuang Shi, and Jingnan Liu

Abstract

Global positioning system (GPS) data from over 260 ground-based permanent stations in China covering the period from 1 March 1999 to 30 April 2015 were used to estimate precipitable water (PW) above each site with an accuracy of about 0.75 mm. Four types of radiosondes (referred to as GZZ2, GTS1, GTS1-1, and GTS1-2) were used in China during this period. Instrumentation type changes in radiosonde records were identified by comparing PW calculated from GPS and radiosonde data. Systematic errors in different radiosonde types introduced significant biases to the estimated PW trends at stations where more than one radiosonde type was used. Estimating PW trends from reanalysis products (ERA-Interim), which assimilate the unadjusted radiosonde humidity data, resulted in an artificial downward PW trend at almost all stations in China. The statistically significant GPS PW trends are predominantly positive, consistent in sign with the increase in moisture expected from the Clausius–Clapeyron relation due to a global temperature increase. The standard deviations of the differences between ERA-Interim and GPS PW in the summer were 3 times larger than the observational error of GPS PW, suggesting that potentially significant improvements to the reanalysis could be achieved by assimilating denser GPS PW observations over China. This work, based on an entirely independent GPS PW dataset, confirms previously reported significant differences in radiosonde PW trends when using corrected data. Furthermore, the dense geographical coverage of the all-weather GPS PW observations, especially in remote areas in western China, provides a valuable resource for calibrating regional trends in reanalysis products.

Full access
Lei Yang, Dongxiao Wang, Jian Huang, Xin Wang, Lili Zeng, Rui Shi, Yunkai He, Qiang Xie, Shengan Wang, Rongyu Chen, Jinnan Yuan, Qiang Wang, Ju Chen, Tingting Zu, Jian Li, Dandan Sui, and Shiqiu Peng

Abstract

Air–sea interaction in the South China Sea (SCS) has direct impacts on the weather and climate of its surrounding areas at various spatiotemporal scales. In situ observation plays a vital role in exploring the dynamic characteristics of the regional circulation and air–sea interaction. Remote sensing and regional modeling are expected to provide high-resolution data for studies of air–sea coupling; however, careful validation and calibration using in situ observations is necessary to ensure the quality of these data. Through a decade of effort, a marine observation network in the SCS has begun to be established, yielding a regional observatory for the air–sea synoptic system.

Earlier observations in the SCS were scarce and narrowly focused. Since 2004, an annual series of scientific open cruises during late summer in the SCS has been organized by the South China Sea Institute of Oceanology (SCSIO), carefully designed based on the dynamic characteristics of the oceanic circulation and air–sea interaction in the SCS region. Since 2006, the cruise carried a radiometer and radiosondes on board, marking a new era of marine meteorological observation in the SCS. Fixed stations have been established for long-term and sustained records. Observations obtained through the network have been used to study regional ocean circulation and processes in the marine atmospheric boundary layer. In the future, a great number of multi-institutional, collaborative scientific cruises and observations at fixed stations will be carried out to establish a mesoscale hydrological and marine meteorological observation network in the SCS.

Full access