Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Rumi Ohgaito x
  • Refine by Access: All Content x
Clear All Modify Search
Shigenori Murakami, Rumi Ohgaito, and Ayako Abe-Ouchi

Abstract

The atmospheric local energy cycle in the Last Glacial Maximum (LGM) climate simulated by an atmosphere–ocean GCM (AOGCM) is investigated using a new diagnostic scheme. In contrast to existing ones, this scheme can represent the local features of the Lorenz energy cycle correctly, and it provides the complete information about the three-dimensional structure of the energy interactions between mean and eddy fields. The diagnosis reveals a significant enhancement of the energy interactions through the barotropic processes in the Atlantic sector at the LGM. Energy interactions through the baroclinic processes are also enhanced in the Atlantic sector, although those in the Pacific sector are rather weakened. These LGM responses, however, are not evident in the global energy cycle except for an enhancement of the energy flow through the stationary eddies.

Full access
Jun-Mei Lü, Seong-Joong Kim, Ayako Abe-Ouchi, Yongqiang Yu, and Rumi Ohgaito

Abstract

Changes in the Arctic Oscillation (AO) during the mid-Holocene and the Last Glacial Maximum were compared to preindustrial (PI) simulations using four coupled ocean–atmosphere models [i.e., Community Climate System Model (CCSM), third climate configuration of the Met Office Unified Model (HadCM3) Met Office Surface Exchanges Scheme, version 2 (MOSES2), L’Institut Pierre-Simon Laplace (IPSL), and Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2)] from the second phase of the Paleoclimate Modeling Intercomparison Project. Results show that the amplitude of the simulated AO during the mid-Holocene is a little smaller than that of the preindustrial simulation. Although the AO pattern and vertical structures are similar to those in the preindustrial simulation, the polar westerlies are slightly weakened and displaced downward to the lower stratosphere, accompanied by weakening of the polar vortex and warming of the cold polar cap region. During the Last Glacial Maximum, when the Northern Hemisphere experiences severe cooling, the intensity of the AO decreases substantially compared to the mid-Holocene, with smaller standard deviations of the AO indices in all models. Furthermore, the magnitude of positive and negative centers of the AO spatial pattern decreases and the strength of the polar vortex and westerlies weakens further with the center of westerlies displaced into the midlatitude upper troposphere. The polar cap region becomes anomalously warm in the stratosphere, whereas it remains cold in the troposphere. The AO appears to be sensitive to background climate state.

Upward-propagating stationary Rossby waves are found to be stronger during the mid-Holocene and Last Glacial Maximum than in the preindustrial simulation. This increase in planetary wave activity might be responsible for the simulated weakening of the AO during the mid-Holocene and Last Glacial Maximum. Recent studies have shown that there is a significant correlation between Eurasian fall snow cover and the winter AO. The upward propagation of Rossby waves was further proposed to explain the physical process linking the AO with the snow depth. It is suggested that a large increase in fall snow depth during the Last Glacial Maximum strengthens the upward-propagating stationary Rossby waves relative to the PI.

Full access
Takashi Obase, Ayako Abe-Ouchi, Kazuya Kusahara, Hiroyasu Hasumi, and Rumi Ohgaito

Abstract

Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere–ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions (i.e., to a doubling of CO2 and to the Last Glacial Maximum conditions). Sensitivity experiments were also conducted to investigate the roles of both surface atmospheric change and changes of oceanic lateral boundary conditions. It was found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than that due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change, together with atmospheric heat flux change, strongly affected the production of both sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.

Full access
Shigenori Murakami, Rumi Ohgaito, Ayako Abe-Ouchi, Michel Crucifix, and Bette L. Otto-Bliesner

Abstract

Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.

Full access