Search Results
You are looking at 1 - 10 of 23 items for
- Author or Editor: Rym Msadek x
- Refine by Access: All Content x
Abstract
The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.
Abstract
The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.
Abstract
Air–sea interaction processes over the Gulf Stream have received particular attention over the last decade. It has been shown that sea surface temperature (SST) gradients over the Gulf Stream can alter the near-surface wind divergence through changes in the marine atmospheric boundary layer (MABL). Two mechanisms have been proposed to explain the response: the vertical mixing mechanism (VMM) and the pressure adjustment mechanism (PAM). However, their respective contribution is still under debate. It has been argued that the synoptic perturbations over the Gulf Stream can provide more insight into the MABL response to SST fronts. We analyze the VMM and PAM under different atmospheric conditions obtained from a classification method that is based on the deciles of the statistical distribution of winter turbulent heat fluxes over the Gulf Stream. The lowest deciles are associated with weak air–sea interactions and anticyclonic atmospheric circulation over the Gulf Stream, whereas the highest deciles are related to strong air–sea interactions and a cyclonic circulation. Our analysis includes the low- and high-resolution versions of the ARPEGEv6 atmospheric model forced by observed SST, and the recently released ERA5 global reanalysis. We find that the occurrence of anticyclonic and cyclonic perturbations associated with different anomalous wind regimes can locally modulate the activation of the VMM and the PAM. In particular, the PAM is predominant in anticyclonic conditions, whereas both mechanisms are equally present in most of the cyclonic conditions. Our results highlight the role of the atmospheric circulation and associated anomalous winds in the location, strength, and occurrence of both mechanisms.
Abstract
Air–sea interaction processes over the Gulf Stream have received particular attention over the last decade. It has been shown that sea surface temperature (SST) gradients over the Gulf Stream can alter the near-surface wind divergence through changes in the marine atmospheric boundary layer (MABL). Two mechanisms have been proposed to explain the response: the vertical mixing mechanism (VMM) and the pressure adjustment mechanism (PAM). However, their respective contribution is still under debate. It has been argued that the synoptic perturbations over the Gulf Stream can provide more insight into the MABL response to SST fronts. We analyze the VMM and PAM under different atmospheric conditions obtained from a classification method that is based on the deciles of the statistical distribution of winter turbulent heat fluxes over the Gulf Stream. The lowest deciles are associated with weak air–sea interactions and anticyclonic atmospheric circulation over the Gulf Stream, whereas the highest deciles are related to strong air–sea interactions and a cyclonic circulation. Our analysis includes the low- and high-resolution versions of the ARPEGEv6 atmospheric model forced by observed SST, and the recently released ERA5 global reanalysis. We find that the occurrence of anticyclonic and cyclonic perturbations associated with different anomalous wind regimes can locally modulate the activation of the VMM and the PAM. In particular, the PAM is predominant in anticyclonic conditions, whereas both mechanisms are equally present in most of the cyclonic conditions. Our results highlight the role of the atmospheric circulation and associated anomalous winds in the location, strength, and occurrence of both mechanisms.
Abstract
This work aims to clarify the relation between the Atlantic meridional overturning circulation (AMOC) and the thermal wind. We derive a new and generic dynamical AMOC decomposition that expresses the thermal wind transport as a simple vertical integral function of eastern minus western boundary densities. This allows us to express density anomalies at any depth as a geostrophic transport in Sverdrups (1 Sv ≡ 106 m3 s−1) per meter and to predict that density anomalies around the depth of maximum overturning induce most AMOC transport. We then apply this formalism to identify the dynamical drivers of the centennial AMOC variability in the CNRM-CM6 climate model. The dynamical reconstruction and specifically the thermal wind component explain over 80% of the low-frequency AMOC variance at all latitudes, which is therefore almost exclusively driven by density anomalies at both zonal boundaries. This transport variability is dominated by density anomalies between depths of 500 and 1500 m, in agreement with theoretical predictions. At those depths, southward-propagating western boundary temperature anomalies induce the centennial geostrophic AMOC transport variability in the North Atlantic. They are originated along the western boundary of the subpolar gyre through the Labrador Sea deep convection and the Davis Strait overflow.
Abstract
This work aims to clarify the relation between the Atlantic meridional overturning circulation (AMOC) and the thermal wind. We derive a new and generic dynamical AMOC decomposition that expresses the thermal wind transport as a simple vertical integral function of eastern minus western boundary densities. This allows us to express density anomalies at any depth as a geostrophic transport in Sverdrups (1 Sv ≡ 106 m3 s−1) per meter and to predict that density anomalies around the depth of maximum overturning induce most AMOC transport. We then apply this formalism to identify the dynamical drivers of the centennial AMOC variability in the CNRM-CM6 climate model. The dynamical reconstruction and specifically the thermal wind component explain over 80% of the low-frequency AMOC variance at all latitudes, which is therefore almost exclusively driven by density anomalies at both zonal boundaries. This transport variability is dominated by density anomalies between depths of 500 and 1500 m, in agreement with theoretical predictions. At those depths, southward-propagating western boundary temperature anomalies induce the centennial geostrophic AMOC transport variability in the North Atlantic. They are originated along the western boundary of the subpolar gyre through the Labrador Sea deep convection and the Davis Strait overflow.
Abstract
The link at 26.5°N between the Atlantic meridional heat transport (MHT) and the Atlantic meridional overturning circulation (MOC) is investigated in two climate models, the GFDL Climate Model version 2.1 (CM2.1) and the NCAR Community Climate System Model version 4 (CCSM4), and compared with the recent observational estimates from the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) array. Despite a stronger-than-observed MOC magnitude, both models underestimate the mean MHT at 26.5°N because of an overly diffuse thermocline. Biases result from errors in both overturning and gyre components of the MHT. The observed linear relationship between MHT and MOC at 26.5°N is realistically simulated by the two models and is mainly due to the overturning component of the MHT. Fluctuations in overturning MHT are dominated by Ekman transport variability in CM2.1 and CCSM4, whereas baroclinic geostrophic transport variability plays a larger role in RAPID. CCSM4, which has a parameterization of Nordic Sea overflows and thus a more realistic North Atlantic Deep Water (NADW) penetration, shows smaller biases in the overturning heat transport than CM2.1 owing to deeper NADW at colder temperatures. The horizontal gyre heat transport and its sensitivity to the MOC are poorly represented in both models. The wind-driven gyre heat transport is northward in observations at 26.5°N, whereas it is weakly southward in both models, reducing the total MHT. This study emphasizes model biases that are responsible for the too-weak MHT, particularly at the western boundary. The use of direct MHT observations through RAPID allows for identification of the source of the too-weak MHT in the two models, a bias shared by a number of Coupled Model Intercomparison Project phase 5 (CMIP5) coupled models.
Abstract
The link at 26.5°N between the Atlantic meridional heat transport (MHT) and the Atlantic meridional overturning circulation (MOC) is investigated in two climate models, the GFDL Climate Model version 2.1 (CM2.1) and the NCAR Community Climate System Model version 4 (CCSM4), and compared with the recent observational estimates from the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) array. Despite a stronger-than-observed MOC magnitude, both models underestimate the mean MHT at 26.5°N because of an overly diffuse thermocline. Biases result from errors in both overturning and gyre components of the MHT. The observed linear relationship between MHT and MOC at 26.5°N is realistically simulated by the two models and is mainly due to the overturning component of the MHT. Fluctuations in overturning MHT are dominated by Ekman transport variability in CM2.1 and CCSM4, whereas baroclinic geostrophic transport variability plays a larger role in RAPID. CCSM4, which has a parameterization of Nordic Sea overflows and thus a more realistic North Atlantic Deep Water (NADW) penetration, shows smaller biases in the overturning heat transport than CM2.1 owing to deeper NADW at colder temperatures. The horizontal gyre heat transport and its sensitivity to the MOC are poorly represented in both models. The wind-driven gyre heat transport is northward in observations at 26.5°N, whereas it is weakly southward in both models, reducing the total MHT. This study emphasizes model biases that are responsible for the too-weak MHT, particularly at the western boundary. The use of direct MHT observations through RAPID allows for identification of the source of the too-weak MHT in the two models, a bias shared by a number of Coupled Model Intercomparison Project phase 5 (CMIP5) coupled models.
Abstract
The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.
Abstract
The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.
Abstract
Because of its persistence on seasonal time scales, Arctic sea ice thickness (SIT) is a potential source of predictability for summer sea ice extent (SIE). New satellite observations of SIT represent an opportunity to harness this potential predictability via improved thickness initialization in seasonal forecast systems. In this work, the evolution of Arctic sea ice volume anomalies is studied using a 700-yr control integration and a suite of initialized ensemble forecasts from a fully coupled global climate model. This analysis is focused on the September sea ice zone, as this is the region where thickness anomalies have the potential to impact the SIE minimum. The primary finding of this paper is that, in addition to a general decay with time, sea ice volume anomalies display a summer enhancement, in which anomalies tend to grow between the months of May and July. This summer enhancement is relatively symmetric for positive and negative volume anomalies and peaks in July regardless of the initial month. Analysis of the surface energy budget reveals that the summer volume anomaly enhancement is driven by a positive feedback between the SIT state and the surface albedo. The SIT state affects surface albedo through changes in the sea ice concentration field, melt-onset date, snow coverage, and ice thickness distribution, yielding an anomaly in the total absorbed shortwave radiation between May and August, which enhances the existing SIT anomaly. This phenomenon highlights the crucial importance of accurate SIT initialization and representation of ice–albedo feedback processes in seasonal forecast systems.
Abstract
Because of its persistence on seasonal time scales, Arctic sea ice thickness (SIT) is a potential source of predictability for summer sea ice extent (SIE). New satellite observations of SIT represent an opportunity to harness this potential predictability via improved thickness initialization in seasonal forecast systems. In this work, the evolution of Arctic sea ice volume anomalies is studied using a 700-yr control integration and a suite of initialized ensemble forecasts from a fully coupled global climate model. This analysis is focused on the September sea ice zone, as this is the region where thickness anomalies have the potential to impact the SIE minimum. The primary finding of this paper is that, in addition to a general decay with time, sea ice volume anomalies display a summer enhancement, in which anomalies tend to grow between the months of May and July. This summer enhancement is relatively symmetric for positive and negative volume anomalies and peaks in July regardless of the initial month. Analysis of the surface energy budget reveals that the summer volume anomaly enhancement is driven by a positive feedback between the SIT state and the surface albedo. The SIT state affects surface albedo through changes in the sea ice concentration field, melt-onset date, snow coverage, and ice thickness distribution, yielding an anomaly in the total absorbed shortwave radiation between May and August, which enhances the existing SIT anomaly. This phenomenon highlights the crucial importance of accurate SIT initialization and representation of ice–albedo feedback processes in seasonal forecast systems.
Abstract
The Northern Hemisphere transient atmospheric response to Arctic sea decline is investigated in autumn and winter, using sensitivity experiments performed with the CNRM-CM6-1 high-top climate model. Arctic sea ice albedo is reduced to the ocean value, yielding ice-free conditions during summer and a more moderate sea ice reduction during the following months. A strong amplification of temperatures over the Arctic is induced by sea ice loss, with values reaching up to 25°C near the surface in autumn. Significant surface temperature anomalies are also found over the midlatitudes, with a warming reaching 1°C over North America and Europe, and a cooling reaching 1°C over central Asia. Using a dynamical adjustment method based on a regional reconstruction of circulation analogs, we show that the warming over North America and Europe can be explained both by changes in the atmospheric circulation and by the advection of warmer oceanic air by the climatological flow. In contrast, we demonstrate that the sea ice–induced cooling over central Asia is solely due to dynamical changes, involving an intensification of the Siberian high and a cyclonic anomaly over the Sea of Okhotsk. In the troposphere, the abrupt Arctic sea ice decline favors a narrowing of the subtropical jet stream and a slight weakening of the lower part of the polar vortex that is explained by a weak enhancement of upward wave activity toward the stratosphere. We further show that reduced Arctic sea ice in our experiments is mainly associated with less severe cold extremes in the midlatitudes.
Abstract
The Northern Hemisphere transient atmospheric response to Arctic sea decline is investigated in autumn and winter, using sensitivity experiments performed with the CNRM-CM6-1 high-top climate model. Arctic sea ice albedo is reduced to the ocean value, yielding ice-free conditions during summer and a more moderate sea ice reduction during the following months. A strong amplification of temperatures over the Arctic is induced by sea ice loss, with values reaching up to 25°C near the surface in autumn. Significant surface temperature anomalies are also found over the midlatitudes, with a warming reaching 1°C over North America and Europe, and a cooling reaching 1°C over central Asia. Using a dynamical adjustment method based on a regional reconstruction of circulation analogs, we show that the warming over North America and Europe can be explained both by changes in the atmospheric circulation and by the advection of warmer oceanic air by the climatological flow. In contrast, we demonstrate that the sea ice–induced cooling over central Asia is solely due to dynamical changes, involving an intensification of the Siberian high and a cyclonic anomaly over the Sea of Okhotsk. In the troposphere, the abrupt Arctic sea ice decline favors a narrowing of the subtropical jet stream and a slight weakening of the lower part of the polar vortex that is explained by a weak enhancement of upward wave activity toward the stratosphere. We further show that reduced Arctic sea ice in our experiments is mainly associated with less severe cold extremes in the midlatitudes.
Abstract
Observed September Arctic sea ice has declined sharply over the satellite era. While most climate models forced by observed external forcing simulate a decline, few show trends matching the observations, suggesting either model deficiencies or significant contributions from internal variability. Using a set of perturbed climate model experiments, we provide evidence that atmospheric teleconnections associated with the Atlantic multidecadal variability (AMV) can drive low-frequency Arctic sea ice fluctuations. Even without AMV-related changes in ocean heat transport, AMV-like surface temperature anomalies lead to adjustments in atmospheric circulation patterns that produce similar Arctic sea ice changes in three different climate models. Positive AMV anomalies induce a decrease in the frequency of winter polar anticyclones, which is reflected both in the sea level pressure as a weakening of the Beaufort Sea high and in the surface temperature as warm anomalies in response to increased low-cloud cover. Positive AMV anomalies are also shown to favor an increased prevalence of an Arctic dipole–like sea level pressure pattern in late winter/early spring. The resulting anomalous winds drive anomalous ice motions (dynamic effect). Combined with the reduced winter sea ice formation (thermodynamic effect), the Arctic sea ice becomes thinner, younger, and more prone to melt in summer. Following a phase shift to positive AMV, the resulting atmospheric teleconnections can lead to a decadal ice thinning trend in the Arctic Ocean on the order of 8%–16% of the reconstructed long-term trend, and a decadal trend (decline) in September Arctic sea ice area of up to 21% of the observed long-term trend.
Abstract
Observed September Arctic sea ice has declined sharply over the satellite era. While most climate models forced by observed external forcing simulate a decline, few show trends matching the observations, suggesting either model deficiencies or significant contributions from internal variability. Using a set of perturbed climate model experiments, we provide evidence that atmospheric teleconnections associated with the Atlantic multidecadal variability (AMV) can drive low-frequency Arctic sea ice fluctuations. Even without AMV-related changes in ocean heat transport, AMV-like surface temperature anomalies lead to adjustments in atmospheric circulation patterns that produce similar Arctic sea ice changes in three different climate models. Positive AMV anomalies induce a decrease in the frequency of winter polar anticyclones, which is reflected both in the sea level pressure as a weakening of the Beaufort Sea high and in the surface temperature as warm anomalies in response to increased low-cloud cover. Positive AMV anomalies are also shown to favor an increased prevalence of an Arctic dipole–like sea level pressure pattern in late winter/early spring. The resulting anomalous winds drive anomalous ice motions (dynamic effect). Combined with the reduced winter sea ice formation (thermodynamic effect), the Arctic sea ice becomes thinner, younger, and more prone to melt in summer. Following a phase shift to positive AMV, the resulting atmospheric teleconnections can lead to a decadal ice thinning trend in the Arctic Ocean on the order of 8%–16% of the reconstructed long-term trend, and a decadal trend (decline) in September Arctic sea ice area of up to 21% of the observed long-term trend.
Abstract
Tropical cyclone (TC) activity in the North Pacific and North Atlantic Oceans is known to be affected by the El Niño–Southern Oscillation (ENSO). This study uses the GFDL Forecast Oriented Low Ocean Resolution Model (FLOR), which has relatively high resolution in the atmosphere, as a tool to investigate the sensitivity of TC activity to the strength of ENSO events. This study shows that TCs exhibit a nonlinear response to the strength of ENSO in the tropical eastern North Pacific (ENP) but a quasi-linear response in the tropical western North Pacific (WNP) and tropical North Atlantic. Specifically, a stronger El Niño results in disproportionate inhibition of TCs in the ENP and North Atlantic, and leads to an eastward shift in the location of TCs in the southeast of the WNP. However, the character of the response of TCs in the Pacific is insensitive to the amplitude of La Niña events. The eastward shift of TCs in the southeast of the WNP in response to a strong El Niño is due to an eastward shift of the convection and of the associated environmental conditions favorable for TCs. The inhibition of TC activity in the ENP and Atlantic during El Niño is attributed to the increase in the number of days with strong vertical wind shear during stronger El Niño events. These results are further substantiated with coupled model experiments. Understanding of the impact of strong ENSO on TC activity is important for present and future climate as the frequency of occurrence of extreme ENSO events is projected to increase in the future.
Abstract
Tropical cyclone (TC) activity in the North Pacific and North Atlantic Oceans is known to be affected by the El Niño–Southern Oscillation (ENSO). This study uses the GFDL Forecast Oriented Low Ocean Resolution Model (FLOR), which has relatively high resolution in the atmosphere, as a tool to investigate the sensitivity of TC activity to the strength of ENSO events. This study shows that TCs exhibit a nonlinear response to the strength of ENSO in the tropical eastern North Pacific (ENP) but a quasi-linear response in the tropical western North Pacific (WNP) and tropical North Atlantic. Specifically, a stronger El Niño results in disproportionate inhibition of TCs in the ENP and North Atlantic, and leads to an eastward shift in the location of TCs in the southeast of the WNP. However, the character of the response of TCs in the Pacific is insensitive to the amplitude of La Niña events. The eastward shift of TCs in the southeast of the WNP in response to a strong El Niño is due to an eastward shift of the convection and of the associated environmental conditions favorable for TCs. The inhibition of TC activity in the ENP and Atlantic during El Niño is attributed to the increase in the number of days with strong vertical wind shear during stronger El Niño events. These results are further substantiated with coupled model experiments. Understanding of the impact of strong ENSO on TC activity is important for present and future climate as the frequency of occurrence of extreme ENSO events is projected to increase in the future.
Abstract
This study investigates the seasonality of the relationship between the Great Plains low-level jet (GPLLJ) and the Pacific Ocean from spring to summer, using observational analysis and coupled model experiments. The observed GPLLJ and El Niño–Southern Oscillation (ENSO) relation undergoes seasonal changes with a stronger GPLLJ associated with La Niña in boreal spring and El Niño in boreal summer. The ability of the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) global coupled climate model, which has the high-resolution atmospheric and land components, to simulate the observed seasonality in the GPLLJ–ENSO relationship is assessed. The importance of simulating the magnitude and phase locking of ENSO accurately in order to better simulate its seasonal teleconnections with the Intra-Americas Sea (IAS) is demonstrated. This study explores the mechanisms for seasonal changes in the GPLLJ–ENSO relation in model and observations. It is hypothesized that ENSO affects the GPLLJ variability through the Caribbean low-level jet (CLLJ) during the summer and spring seasons. These results suggest that climate models with improved ENSO variability would advance our ability to simulate and predict seasonal variations of the GPLLJ and their associated impacts on the United States.
Abstract
This study investigates the seasonality of the relationship between the Great Plains low-level jet (GPLLJ) and the Pacific Ocean from spring to summer, using observational analysis and coupled model experiments. The observed GPLLJ and El Niño–Southern Oscillation (ENSO) relation undergoes seasonal changes with a stronger GPLLJ associated with La Niña in boreal spring and El Niño in boreal summer. The ability of the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) global coupled climate model, which has the high-resolution atmospheric and land components, to simulate the observed seasonality in the GPLLJ–ENSO relationship is assessed. The importance of simulating the magnitude and phase locking of ENSO accurately in order to better simulate its seasonal teleconnections with the Intra-Americas Sea (IAS) is demonstrated. This study explores the mechanisms for seasonal changes in the GPLLJ–ENSO relation in model and observations. It is hypothesized that ENSO affects the GPLLJ variability through the Caribbean low-level jet (CLLJ) during the summer and spring seasons. These results suggest that climate models with improved ENSO variability would advance our ability to simulate and predict seasonal variations of the GPLLJ and their associated impacts on the United States.