Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: S. D. Hilberg x
  • Refine by Access: All Content x
Clear All Modify Search
N. E. Westcott, S. D. Hilberg, R. L. Lampman, B. W. Alto, A. Bedel, E. J. Muturi, H. Glahn, M. Baker, K. E. Kunkel, and R. J. Novak

In the midwestern United States, the summertime rise in infection rate by the West Nile virus is associated with a seasonal shift in the abundance of two mosquito populations, Culex restuans and Culex pipiens. This seasonal shift usually precedes the time of the peak infection rate in mosquitoes by 2–3 weeks and generally occurs earlier in the summer with above normal temperatures and later in the summer with below-normal temperatures. Two empirical models were developed to predict this seasonal shift in mosquito species, or the “crossover,” and have been run operationally since 2004 by the Midwestern Regional Climate Center located at the Illinois State Water Survey. These models are based on daily temperature data and have been verified by use of a unique dataset of daily records of mosquito species abundance collected by the Illinois Natural History Survey. An unfortunate characteristic of the original temperature models was that the crossover date often was reached with little or no lead time. In 2009, the models were modified to incorporate National Weather Service (NWS) model output statistics (MOS) 10-day temperature forecasts. This paper evaluates the effectiveness of these models to predict the crossover date and thus the period of increased risk of West Nile virus in the Midwest.

For the 8-yr period from 2002 to 2009, 6 yr had at least one model predicting the crossover within one week of the actual crossover date, and for 7 yr at least one of the model predictions was within 2 weeks of the actual crossover date. Incorporation of MOS temperature forecasts for a 10-day period, although not substantially changing the predicted crossover date, greatly improved the forecast lead time by about 9 days. From a disease management point of view, this improvement in advanced notice is significant. In 2009, there was an unprecedented early crossover date and a failed forecast. The poor forecast was likely caused by an unusually early summer prolonged and intense heat wave, followed immediately by a record cold July.

Full access
John L. Campbell, Lindsey E. Rustad, Sarah Garlick, Noah Newman, John S. Stanovick, Ian Halm, Charles T. Driscoll, Brian L. Barjenbruch, Elizabeth Burakowski, Steven D. Hilberg, Kristopher J. Sanders, Jason C. Shafer, and Nolan J. Doesken

Abstract

Ice storms are important winter weather events that can have substantial environmental, economic, and social impacts. Mapping and assessment of damage after these events could be improved by making ice accretion measurements at a greater number of sites than is currently available. There is a need for low-cost collectors that can be distributed broadly in volunteer observation networks; however, use of low-cost collectors necessitates understanding of how collector characteristics and configurations influence measurements of ice accretion. A study was conducted at the Hubbard Brook Experimental Forest in New Hampshire that involved spraying water over passive ice collectors during freezing conditions to simulate ice storms of different intensity. The collectors consisted of plates composed of four different materials and installed horizontally; two different types of wires strung horizontally; and rods of three different materials, with three different diameters, and installed at three different inclinations. Results showed that planar ice thickness on plates was 2.5–3 times as great as the radial ice thickness on rods or wires, which is consistent with expectations based on theory and empirical evidence from previous studies. Rods mounted on an angle rather than horizontally reduced the formation of icicles and enabled more consistent measurements. Results such as these provide much needed information for comparing ice accretion data. Understanding of relationships among collector configurations could be refined further by collecting data from natural ice storms under a broader range of weather conditions.

Free access
Eugene S. Takle, Christopher J. Anderson, Jeffrey Andresen, James Angel, Roger W. Elmore, Benjamin M. Gramig, Patrick Guinan, Steven Hilberg, Doug Kluck, Raymond Massey, Dev Niyogi, Jeanne M. Schneider, Martha D. Shulski, Dennis Todey, and Melissa Widhalm

Abstract

Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertainty and increase profitability for corn producers. The purpose of this paper is to acquaint climate information developers, climate information users, and climate researchers with an overview of weather conditions throughout the year that affect corn production as well as forecast content and timing needed by producers. The authors provide a graphic depicting the climate-informed decision cycle, which they call the climate forecast–decision cycle calendar for corn.

Full access